
RADC-TR-81-145
Final Technical Report
June 1981

ANALYSIS OF IV&V DATA
VA Logicon, Inc.

t Jane W. Radotz

APPIOVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

OTIC
P", ELECTE -.

& ROME AIR DEVELOPMENT CENTER
Air Force Systems Command

Griffiss Air Force Base, Now York 13441.

[W
819 6 1

J

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-81-145 has been reviewed and is approved for publitation.

APPROVED.

JOHN PALAIMO
Proj ect Engineer

APPROVED:

ALAN R. BARNUM, Assistant Chief
Information Sciences Division

FOR THlE COMMDER:,

JOHN P. RIUSS
Acting Chief, Plans office

If youar addread hais edinged or if you vish to be removed from theRADC
wailing list, or It the addressee is no longer eaployed by your organization,
please notify WfC(ISIE) Criffiss APB NY 13441. %his vill assist .u~sin,
waiutiu~~tg a torrent mailiug list.

Do~not taturu this copy. etai or destroy.

UNCLASSIFIED
SECURITY CLA SSIFICATION OF TMIS PAGE (W"on Date Ent...).

PAGE READ INSTRUCTIONS
RPORT DOCUMENTATION PAEBEFORE COMPLETING FORM\ RAD *TR 81- 45 2. 'OVT ACCESSIO N. 3. RECIPIENT'S CATALOG NUMSER

ANAIS OFe IV&V DATA Final ' Technical Rep it.
1 Apr 80 -31 Mar 81 f

I/R:SED-81 3L1

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT, TASK
Logicon, Inc. AREA A WOI(WUNIT WUR

255 W. 5th Street 111)"k-F I
San Pedro CA 90731. -2., 528PI06_______

I I. CONTROLLING OFFICE NAME AND ADORES$ /j I,.ERKST -Q.t

Rome Air Development Center (ISIE) T/f Jne 1981
Griffiss AFB NY 13441 1'7UIAGER OF PAGES

14. MQNITORING AGENCY NAME &AOONESS(Jidillr UI(Qw Coti Igo S1. SECURITY CLASS. eol tha. Popoff)

Same UNCLASSIFIED)
/ ~ ISa. OECL ASSI FICATIO!/ DOWN GRADING

N/CEOULEF

IW OtSfRIUION STATEMENT (offh#. N~owi NF

Approved for public release; distribution unlimited.

I?. OISTROUION STATEMjENT (W the "bra#wf4 WIN lot~ 10,0 It dlUMmf WeO RO~W)

Same

0., SUPPChI49NYARy NdOTES

RADC Project Engineer: John Palaino, (RADC/ISIE)

IC Ke *ORDS (.aImgea,~aecd ineapMlf.II'b ~bN~
Independent Ver if ication and Validation Developmnt Productivity
soft are Reliability Software Error Analysi8
Sof are Maintainability Software Error.Wagories
I ev lopnient Cost Software Data Collectiont

ABSTRACV tC4WIt"# *A 4#vO#* 1040 It C~ P1t*,W *Ad 40"110S 11 -6 AUOA)
his report presents the results of a one-year study of Independent Vor:fi-

cation and Validation (IV&V) results. Five large 1V&V projects are
examnined to determine the effects of 1V&V on soft-are reliability, main-
tainability, and development cost/productivity. Current literature rele-
vant to these topics is uurveyed. MVV-detectcd anomalies are categorizad
as to location, error category, effect, severity. acceptance, and resolu-
tion. Differences in pro e ct results are used to formulate recommendation
for improving 1V&V ef feet1Wene2".

00 1473 to o 0 movil isLSSF oss)

StGUUfTaV CLASSIFICAION OF TIS P^011 Ft; A; t4J4

TABLE OF CONTENTS

1. Introduction 7

2. IV&V Project Characteristics 9
2.1 Development Project Characteristics 9
2.2 IV&V Project Characteristics 11

3. General Results .. 17
3.1 Number of Anomalies Found s " " * " 17
3.2 Distribution of Anomalies Among Development Materials 20
3.3 Anomaly Categories . 23
3.4 Anomaly Effects 25
3.5 Anomaly Severity , , , , 27
3.6 Phase of Anomaly Detection 27
3.7 Anomaly Report Acceptance 27
3.8 Anomaly Resolution 32
3.9 Data Relationships . 32

4. Results Concerning Software Reliability 37
4.1 Relevant Findings in the Literature 38
4.2 Project Results , 40

5. Results Concerning Software Maintainability " . " " 53
5.1 Software Attributes That Contribute to Maintainability , , , , 54
5.2 IV&V's Potential for Improving Maintainability , . , , , . . . 55
5.3 Project Results , • , • , . . • . . • , . . , • , . , , . , 58

6. Results Concerning Development Cost/Productivity 69
6.1 Factors Affecting Development Cost/Productivity . . , . , . . 70
6.2 Factors Affected by IV&V , , ... ,. , , 70
6.3 Project Results . 82

7. Conclusions 99
7.1 Study Conclusions . . ., . , , , 99
7.2 Recoinnendations for IV&V Planning and Management 100
7.3 Recoiniiendations for Future Study . . , , . , . , . . . , . 101
7.4 Reconinendations for Data Collection 103

Appendix A- Project Selection . . . ,, ,. , , 107

Appendix B- Data Collection 113

Appendix C - Software Features That Contribute to Maintainability . . 133

References 131

LIST OF ILLUSTRATIONS

1. Anomalies Per Thousand Machine Instructions 19
2. Code Anomalies Per Thousand Machine Instructions 21
3. Development Materials in Which Anomalies Were Found 22
4. Predicted Effects of the Anomalies Reported 26
5. Severity Ratings of the Anomalies Reported 28
6. Severity Ratings of Code Anomalies 29
7. Anomalies Found in Each Development Phase 30
8. Anomaly Report Acceptance . 31
9. Anomaly Resolution 33

10. Acceptance of Anomaly Reports Concerned With Reliability 41
11. Resolution of Anomalies Concerned With Reliability 42
12. Corrected Reliability Anomalies Per Thousand Machine Instructions * 44
13. Development Materials in Which Corrected Reliability Anomalies

Were Found 45
14. Number of Anomalies Affecting Each Aspect of Reliability...... 48
15. Severity Ratings of Corrected Reliability Anomalies 49
16. Development Phase in Which Corrected Reliability Anomalies Were

Detected 50

17. Acceptance of Anomaly Reports Concerned With Maintainability . . . 60
18. Acceptance of Anomaly Reports Concerned Solely With Maintain-

; a b i l i t y,. . 6 1
19. Resolution of*Anomalies Concerned"With Maintainability . . . 62

20. Resolution of Anomalies Concerned Solely With Maintainability , 63
21. Development Materials in Which Corrected Maintainability Anomalies

Were Found . 65
22. IV&V Cost . 84

LIST OF TABLES

1. Selected Projects 10. 1
2. Software Tools Used on the IV&V Projects 13
3. Data Collected From the IV&V Projects 1. 8
4. Number or Anomalies Reported in Each Category • . . 24
S. Anomaly Severity Relationships 34
6. Anomaly Resolution Relationships 35
7. Number of Corrected Reliability Anomalies in Each Category 46
8. Number of Corrected Maintainability Anomalies in Each Category . • . 66
9. Factors Affecting Develolment Cost/Productivity 71
10. Cost Benefits of Early Detection--Scenario I 88
11. Cost Benefits of Early Detection--Scenario 2 90
12. IV&V Effects on the Cost of Defect Removal 93
13. Cost Effects of Invalid Anomaly Reports 96
14. Suminary of Anomaly Report Processing Effects * 98

SUMMARY

The Analysis of IV&V Data Study was a one-year project undertaken to determine
the effects of Independent Verification and Validation (IV&V) on software re-
liability, maintainability, development cost, and development productivity.
Five large IV&V projects were selected for study. Information was collected
from each of the five projects concerning the development effort, the IV&V
effort, and each anomaly reported by IV&V. Current literature was surveyed
to obtain information relevant to software reliability, maintainability, de-
velopment cost, and development productivity. The IV&V results were analyzed
in the'. light of findings from the literature, and conclusions were drawn and
recomnendations formulated for improving IV&V effectiveness.

The results of the study may be summarized as follows:

e General Results: 1575 anomalies were reported by the 5 pro-
jects. Of tiiie, 1023 concerned software reliability, 854 con-
cerned software maintainability, and 167 concerned efficiency,
usability, and other effects. Multiple effects cause the sum to
exceed 1575.

e Effects on Reliability: The primary concern of IV&V is software
rel iabi I ity.

Each IV&V project reported an average of 150 anomalies (2.2
per thousand machine language instructions) that would have
affected program reliability and that were considered in.-
portant enough to be acted on.

Of the three programs that have recorded operational per-
formance, none has required modification to correct reli-
ability problems after undergoing IV&V.

e Effects on Maintainability: IV&V effects on maintainability
varie draMically from one project to another, depending upon
project objectives:

Where the IV&V charter included maintainability as a con-
cern, as many as 197 anomalies concerned solely with main-
tainability were reported and corrected.
Where maintainability concerns were deemphasized, as few as
th~ree such anomtalies were reported.

Effects on Development Cost/Productivity:

1V3V cost averaged 25% of develolttent cost and 20% of total

acquisition cost on the projects surveyed.

N Cost savings resulting from the detection of reliability
anoinalies alone ranged from 5% to 25% of development cost,
in some cases exceedin the cost of the IV&V effort.

-3-

The detection of maintainability and other anomalies had
additional cost benefits on the software life cycle.

Out of 125 cost/productivity factors identified from the
literature, IV&V has no effect at all on 90, indicating
the limited overhead that IV&V places on the development
process.

Of the remaining 35 factors, IV&V has a positive effect on
27 and a negative effect on 9 (on one, both a positive and
negative effect could be seen).

IV&V enhances programmer productivity by decreasing the
time spent in false starts and defect removal.

The major conclusions of the study were as follows:

9 IV&V results depend on project charter and directives--IV&V
finds the types of problems it is directed to find.

a IV&V has a significant effect on software reliability,

* IV&V is being underutilized as a tool for improving software
maintainability.

* IV&V can pay for itself through the detection of reliability
anomalies alone.

The cost benefits of 'IV&V are enhanced by early detection of
anomal ies.

Major reconmiendations derived from these conclusions are as follows:

* To increase IV&V's effect on reliability: encourage independ-
ence of outlook and techniques, allow for early detection of
problems, and ensure that anomaly corrections are reverified.

To increase IV&V's effect on maintainability: include a main-
tainability evaluation in the IV&V project's charter and allow
time in the development process for verification of finial pro-
gram documentation.

e To increase IV&V cost benefits: begin IV&V early in the devel-
opm'nt process, require delivery of preliminary development
materials, especially those for requirements and design, and en-
sure prog)t action on IV&V findings.

-4-

PREFACE

This docLuint is the technical report for the Analysis of IV&V Data Study
performed by Logicon, Inc., under Contract F30602-80-C-0115 with the Rome Air
Development Centd, (RADC). The work was performed during the period I April
1980 to 31 March 1981.' The author of this report is Jane W. Radatz. Tech-
nical direction was provided by Mr. John Palaimo, the RAUC project engineer.
Special thanks are owed to Mr. Donald Fletcher (WSMN!RSCS), Captain John
Grelck (BMO/MNNAG), and Lt. Colonel Thomas Jarrell (ASD/YYM), who provided
data essential to the study. Significant contributions to the data collection
activity were also made by Elaine Renner, Norie Roeder, and Joan Small of
Logicon. Susan Moy and Myra Chern provided expertise in the statistical anal-
ysis of the IV&V data. Marilyn Fujii, Edward Hinton, Jeffrey Laub, and Dennis
Meronek reviewed this report and provided valuable comients and suggestions.

DTUC TAB

!a inTJC
zi.--

' -'"--SEV ' 168 1981
. i ;a la lv co!.

-- lvtlbu 611 /01Dis o-OO4 D

1.• INTRODUCTION

Independent Verification and Validation (IV&V) is the systematic evaluation of
a computer program by an agency independent of the developer. Usually per-
formed in parallel with the software development effort, IV&V has as its major
objectives detecting development proolems as early as possible and providing
the program office with increased visibility into the development effort. The
basic tenet of this approach is that the independence of the IV&V agency
provides a fresh viewpoint, an objective attitude, and tools and techniques
specifically designed for error detection.

Current trends in large-scale Department of Defense (DoD) software procurement
are toward increasing use of IV&V as a managerial aid. Air Force Regulation
122-9 requires IV&V for all software that exercises direct control over nu-
clear weapons. The Navy's software life cycle management guide, NAVELEXINST
5200.23, "strongly reconends" full IV&V for all projects in certain cate-
gories and requires program managers to "keep in mind the advantages of having
an IV&V contractor" when planning a software development project. Additional
Air Force policy statements are expected in the near future making IV&V a part
of the development of all embedded computer systems. This increasing use of
IV&V has resulted from growing concern for the quality of computer software
and from recognition of the serious impact of software errors on critical and
costly systems.

On most projects, use of IV&V is at the discretion of the program manager.
Because IV&V can be a significant cost fdctor in a software development proj-
ect, the decisions of whether and how to use it are major ones. Until now, no
quantitative data have been available to help a program manager make these de-
cisions or to provide baselines against which IV&V results could be measured.
The Analysis of IV&V Data Study was undertaken to provide this information.

The objectives of the study were as follows:

To determine the effects of IV&V on software reliability, glain-
tainability, development cost, and development productivity

* To formulate recorntendations for improving the effectiveness of
IV&V on future projects

The approach that w.s taken was to obtain the results of actual IV&V projects,
to identify significant similarities and differences amiong them, and to cot-
relate the findings with results found in the literature. Section 2 describes
the projects that were used for the Study. Sections 3 through 6 present re-
sults of the data analysis. Conclusions and recoasnendations are presented in
Section 7. Details of the technical approach are given in Appendixes A and 8.
Appendix C identifies software features that Contribute to maintainability.

-7-

2. IV&V PROJECT CHARACTERISTICS

The study examined five large IV&V projects. These projects were selected
from 35 candidate projects based on criteria including the size and applica-
tion of the system being evaluated and the availability of data for the IV&V
study. Table 1 identifies the projects that were selected. The following
paragraphs describe these projects in terms of the development projects under-
going IV&V and the characteristics of the IV&V projects.,

2.1 Development Project Characteristics

The development efforts evaluated by the five IV&V projects involved a variety
of scientific applications and employed different development techniques.
Their basic characteristics are summarized below.

2.1.1 Project 1

Project I evaluated three interrelated programs:

• Two commnand and control programs
* A mathematical program invoked by the coaitand and control pro-

grams

The command and control programs each consisted of 24,000 assembly language
source lines and were real-time, interrupt-driven programs. One was being
modified; the other was undergoing initial development. The mathematical
program consisted of 39,000 FORTRAN source lines and 2,000 assembly language
source lines. It was a time-critical batch program (that is, it had to finish
executing within a given amount of time) and was undergoing initial develop-
ment.

Development of this system took place over a 3-1/2-year period, Progranint
practices included top-dowh program design, use of a basic program support
liorary, and use of a mcdified programmer team.

2.1.2 Project 2

Project 2 evaluated a major mnodification to the three programs Involved in
Project 1. Program sizes, real-tive characteristics, and programming prac-
tices remained virtually the same.

2.1.3 Project 3

Project 3 evaluated critical portions of a missile tracking and analysis sys-
tem. The overall System contained 176,000 source lines. Included in the
study were IV&V efforts focusing on two key programs:

* A dedicated operating system
A missile tracking program

-9-

s- -

rCo 0 0 Q

CA.
C) 6

0 0

-i- do 4J so~ ,&4

UU

010

The operating system was a real-time program consisting of 14,000 assembly
language source lines. The missile tracking program was a real-time program
consisting of 23,000 FORTRAN source lines and 16,000 assembly language source
lines.

Development of the system took place over a 4-year period. Programming prac-
tices included the use of both full and modified programmer teams.

2.1.4 Project 4

Project 4 evaluated a real-time display system. Included in the study were
IV&V efforts focusing on programs totaling 40,000 FORTRAN source lines and
1,000 assembly language source lines. The system included both real-time and
nonreal-time components and was developed over a period of 2-1/2 years.

The Project 4 development was the only one of the five that was considered to
have used modern programming practices. Features of the development effort
ci luded:

Top-down design at both the system and program levels
e Use of a program design language
a Weekly walk-throughs from program inception
@ Use of a modified programmer team
* Use of structured FORTRAN implemented with a preprocessor
e Development in "builds"
* Use of a fully automated program support library

2.1.5 Project 5

Project 5 evaluated portions of an avionics system totaling 158,000 lines of
JOVIAL and assembly language code. Included in the study were IV&V efforts
focusing on a real-time portion consisting of 52,000 assembly language source
lines.

Development of the program took place over a 6-year period. Progranmming prac-
tices included top-down design at both the system and program levels and the
use of a modified programmer team. A unique feature of the Project 5 develop-
ment effort was a change in charter that occurred during the coding and check-
out phase. Rather than completing the initial development as originally
planned, the developer was redirected to explore alternative implementations
as part of the development effort.

2.2 IV&V Project Characteristics

The standard approach to IV&V entails five distinct activities proceeding in
parallel with the development effort:

* Requirements Verification: Evaluation of the program require-
ments, as documented in requirement specifications, to ensure
that they are clear, complete, correct, and consistent with one
another and with higher level specifications

- 11-

* Design Verification: Evaluation of the preliminary and detailed
design, as documented in the before-code design specification,
to ensure that it is a complete and correct implementation of
the verified requirements

e Code Verification: Inspection of the coded version of the pro-
gram to ensure that it is a complete, correct, and (sometimes)
optimal implementation of the verified design

Program Validation/Testing: Formal testing of the program to
ensure that it satisfies its specified requirements

s Documentation Verification: Inspection of the requirement and
design specifications, and sometimes the user manuals and other
documents, to ensure that they accurately describe the program
as implemented

There was considerable deviation from this process among the projects sur-
veyed. The IV&V efforts comprising Projects 1 and 2 focused primarily on code
verification and testing. Requirement specifications were for the most part
accepted as valid and used as the baseline against which the code was eval-
uated. Design materials were not published until well after code production
was under way, so were not available for design verification. Analysis of the
requirement specifications, design specification, and other documents for
adequacy as program documentation was not within the scope of the projects.

On Project 3, the requirement specifications contained a significant amount of
design material. As a result, requirements verification detected both re-
quirement and design problems. The before-code design specification contained
only high-level design information, preventing a detailed design verification
activity using this document. Code verification and testing took place as
usual, and considerable attention was devoted to documentation verification.

Project 4 addressed the development effort that used modern programming prac-
tices. On this project, IV&V participants took part in the weekly walk-
throughs of the evolving requirements and design. Many problems were reported
in these meetings rather than through the normal medium of anomaly reports.
Code verification and testing were performed as usual. Documentation verifi-
cation was deemphasized, and most documentation problems were reported by
letter rather than by anomaly report.

Project 5 was the only one of the five to include a full design verification
step. This project was also nonstandard, however, in that requirements ver-
ification was not perfoned and in that, with the redirection of the develop-
m ent effort to explore alternative implementations, the IV&V effort conducted
extensive testing in support of this new effort.

Table 2 identifies the software tools used on the five IV&V projects. All
five projects used both static analysis tools, which process or evaluate the
program without executing it, and dynamic analysis tools, which aid in program
testing by providing a test environment, controlling and monitoring program
execution, or modeling program behavior.

-12

Table 2. Software Tools Used on the IV&V Projects

Tool Function

Projects 1, 2

Tape Comparison Program Identify differences between object tapes

Source Comparison Program Identify differences between source files

Code Inspection Aid Generate global cross-references and an-
notated source listings; identify certain
errors

Software Environment Simulator Simulation of flight computer, peripheral
s vices, and external environment

Data base Analyzer Generate set/use information from the
global cross-reference

Memory Decode Program Translate load module to source language

Extension Register Analyzer Verify correct setting of extension
registers

Real-Time Analyzer Uetect potential conflicts caused by in-
terrupts and job priorities

Source Convsersion Program Convert source code to execute on dif-
ferent computer

Assembler, Compiler, Loader Verify correct assembly, compilation,
loading

Memory Allocation Program Provide variable name and initial value
of each location it) temaporary miemory

Drum Memory Uuiip Processor Formnat and print selected poitions of
druni memory

Program Structure Analyzer Conf inii correct compilation of provram~
Inerrtive Computer Veiycre tpration of fliblht pro-

Simlation (ICS) of flight graw in its target com~puter
Computer

110L Simulation of Flight Evaluate flight program accuracy and
Program correct ries s

ILS of G~round Program Computer Verify correct operationi of LA I prougra

-13-

Table 2. Software Tools Used on the IV&V Projects (continued)

Tool Function

Uata base Preprocessor Format and verify flight constants prior
to simulation

branch Analysis Prograi Monitor program execution by recording
the number of times each code segment is
executed and each branch outcome occurs

Project 3

Global Cross-Reference Gen- Generate cross-reference of program
erator variables and labels

Source Comparison Program Identify differences between source files

Interrupt Intercepter Intercept and modify real-time interrupts

Software Monitor Record the state of the system at pre-
selected execution points

Console Monitor Capture transient displays on CRT console
and produce hard copy for later analysis

Time Hark Tool Monitor and recora all program requests
made to tinier; simulate additional re-
quests

Real-Time Driver Create real-time tasks and monitor task
dispatching

Console Test Program Send selected discretes to flight control
console to test hardware interface

Macro Test Program Verify correct operation of program
macros

Data Capture Program Write incoming telenietry data on tape

Plot Board Driver Send data to plotboards to test hardware
interface

Task ietwork Siimulator Sitiulate a network of real-time tasks to
test task cooviunication and 4ueueiny

Test Driver Drive operating system and monitor be-
havi or

Autotmated Flowctarter benerate flowcharts from code

-14-

K. m •m " w .~ ~ mmmmmm m

Table 2. Software Tools Used on the IV&V Projects (continued)

Tool Function

Program Structure Analyzer Perform symbolic execution and path
analysis

Time Code Translator Test Test hardware clock
Program

Branch Analysis Program Monitor program execution by recording

the number of times each code segment
is executed and each branch outcome
occurs

Execution Tracer Execute in conjunction with instrumented
code to trace execution, display inter-
mediate values, and verify assertions

Data Base Modifier Modify data base values for program
testing

Data Base Access Program Permit batch access to data base for
testiny of individudl routines

Sensor Data Extractor Extract sensor data from history tapes
for comparison and for use in driving
plotboards

Routine Interface Verifier Verify consistency and correctness of

routine interfaces

Microfiche Plot Program Generate microfiche plots of sensor data

History Tape Converter Convert history tapes generated by one
system to format suitable for testinU
another system

History Tape Perturber i odify contents of history tape for pro-
gram testingj

Data Flow Analyzer Perform analysis of interprocedural data
flow to detect potential mishandling of
data

Software Timer Monitor execution time of selected
maodules

" Address Locator Determine address of any routine in pro-
gram load modulei-

, -15I-

Table 2. Software Tools Used on the IV&V Projects (continued)

Tool Function

Project 4

Source Comparison Program Identify differences between source files

Global Cross-Reference Generate cross-reference of program
Generator variables and labels

Automated Flowcharter Generate flowcharts from code

Program Structure Analyzer Perform symbolic execution and path
analysis

File Index and Source List Generate indexed source listing
Generator

History Tape Dump Format and print contents of program.
history tape

History Tape Modifier Modify history tape for program testing

Load Module Comparison Program Ensure that the load module tested by
IV&V matches the load module certified
for operational use

Project 5

Environmental Simulator Simulate electromagnetic pulse environ-
inent

Electronic Warfare Simulator Simulate flight computer and interfacing
equ I pment

Core Image Comparator Compare core image before and after
simulation to detect memory destruction

Core Image Refo~atter Reformat core image for use on another
computer

Computer Interface Program Permit interfacing of two computers

Patch Processor Apply patches to a given core image

HOL Simulation of Program Evaluate algorithms used in program

~-16-

,!4

3. GENERAL RESULTS

Table 3 identifies the types of data collected from the five IV&V projects.
Analysis of this data was performed with the aid of the Statistical Package
for the Social Sciences (SPSS), a collection of statistical programs developed
by the University of Chicago (Reference 1).* Results specific to IV&V's
effects on software reliability, maintainability, and cost/productivity are
presented in Sections 4, 5, and 6, respectively. General results useful as
background for these findings are presented in this section.

3.1 Number of Anomalies Found

IV&V results are of two general types:

* The detection of anomalies

i Assurance of the absence of anomalies of particular types in
given segments of code or documentation

Both types of results contribute to the determination of software quality.
The first type, however, not only determines software quality but affects it
as well by bringing about the correction of software faults. To evaluate
IV&V's effect on software reliability and maintainability, therefore, the
study focused on the anomaly detection aspect of IV&V, looking at the number
and types of anomalies detected and the impact, and resolution of these
anomal ies.

A total of 1575 anomalies were reported by the five IV&V projects. The number
reported by each project was as follows:

is Project 1: 249
* Project 2: 325
i Project 3: 510
* Project 4: 175
* Project 5: 316

To normalize these figures, they were compared with the number of machine
language instructions generated by the programs examined. The results are
shown in Figure 1. The overall average was 4.6 anomalies per thousand machine
language instructions. Project 3 varied most dramatically from this average,
with 13.4 anomalies per thousand machine instructions.

Since different projects operated under different charters regarding analysis
of specifications and other documents, a similar analysis was performed using
only the code anomalies found. A total of 802 code anomalies were reported,
broken down as follows:

TT "LT , et al., Statistical Package for the Social Sciences, McGraw Hill,

191.-

, , -1 7 -

Table 3. Data Collected From the IV&V Projects

* Data concerning each anomaly reported by IV&V

- Location (specification, code, etc.)
- Type of problem
- Probable effects if left uncorrected
- Severity
- Detection date
- Detection method
- Resolution
- Resolution date

* Data concerning each IV&V project

- Objectives
- Schedule
- Man-loading
- Relationship with developer
- Tools and techniques used
- Cost

m Data concerning each development project

m Schedule
- Man-loading
- Development practices used

Test results
- Software operational performance
- Software maintenance requirements

Cost

- . U',

15

14 13.4

13

12
11

10

9

8- 7.3

7

6
5 4.6

4 3.5

3- 2.7 V_2,4

Project I Project 2 Project 3 Project 4 Project 5 All Projects

Figure 1. Anomalies Per Thousand Machine Instructions

- 1Q-

e Project 1: 193
a Project 2: 205
Project 3: 111
a Project 4: 100
* Project 5: 143

A comparison of these figures with the number of machine language instruc-
tions in each program is shown in Figure 2. These results are surprisingly
uniform, averaging 2.2 code anomalies per thousand machine instructions. The
somewhat higher figures for Project 5 probably result from the experimental
nature of the development effort, with many different versions of the program
being tried over the course of the development. It is interesting to specu-
late that the low figure shown for Project 4 results from its use of modern
programming practices, but the sample size is too small to support such a
conclusion. The overall average of 2.2 code anomalies per thousand machine
instructions is slightly higher than the 2.0 figure observed by Rubey in a
study of IV&V results performed in 1975 (Reference 2).*

3.2 Distribution of Anomalies Among Development Materials

Figure 3 indicates, for each project, the number of anomalies found in:

e Requirement specifications before code delivery
* Design specifications before code delivery
I Code
e Requirement specifications after code delivery
e Design specifications after code delivery
s User documentation and other materials

The analysis was intended to determine where and when development problems
were likely to be found by IV&V. Instead, it illustrates the high dependence
of IV&V results on IV&V and development project characteristics.

The results for Projects 1 and 2 clearly reflect their focus on ensuring com-
pliance of the code with the requirements. The only surprising aspect is tile
significant number of requirement anomalies reported on Project 2. The re-
suits for Project 3 reflect its attention to all aspects of IV&V, the unavail-
ability of detailed design materials for a full design verification, and its
strong emphasis on documentation verification. Results for Project 4 reflect
the reporting of requirement, design, and documentation anomalies in meetings
and letters rather than anomaly reports. Project 5 results show its de-
emphasis on requirement verification and its performance of design verifica-
tion, code verification, testing, and documentation verification. The change
of charter imposed on the Project 5 development effort, making it an ex-
perimental rather than standard development project, makes it impossible to
determine whether the performance of design verification would have decreased
the number of anomalies found in the code.

Rubey, R. J., "Quantitative Aspects of Software Validation," Proceedings of

the International Conference on Reliable Software, April 1975, ,46'5 .7-

-20-

5-

4-

3.3
3- 2.9

m :, 2.2
2.1 2.2

2.
1.3i 1-

Project 1 Project 2 Project 3 Project 4 Project 5 All Projects

Figure 2. CodeAnomalies Per Thousand Machine Instructions

2.

1-21

0)0

'4- WV

di) U 4- Or

- 4) '-

Cfl 4
a .0C
o 0 L

uE Ur_ 0 L

~4J -r-4J 0

l d U4J 0 4.)
ifl- M%- M

4- (A - 4J 0

4J u -4J u 4
4) CX d) M

Cdi V) d)
0

c~fl coo w
CD IMC

.f-W0 r '. 0)

0 0 0

(U

'-4 '..4

Q

41)
u

.4 77

LCL

4%j~ kot

l~~~aPO0 'Jd uoppddSWUU 0Jq

Of all five projects, only Project 3 rcported a significant number of anom-
alies in the user documentation. The other projects were not chartered to
evaluate these materials, and reported only those anomalies they happened to
detect in trying to use the documents themselves.

3.3 Anomaly Categories

Table 4 shows the number of anomalies reported in each category for each
project and for the study as a whole. Notable results are as follows:

* Among requirement anomalies, incorrect and incomplete require-
ments predominate, accounting for 72% of all requirement anom-
alies.

* Among before-code design specification anomalies, reported al-
most solely by Project 5, anomalies concerned with choice of
algorithm/mathematics, data definition, and data handling pre-
dominate.

* Among code anomalies:

Projects 1, 2, and 5 had as their most prevalent category
"choice of algorithm or mathematics," a design-oriented
category.

All projects reported a considerable number of data handling
problems.

Overall results show that code anomalies fell into the fol-
lowing categories, in decreasing order of frequency;

o Choice of algorithm or mathematics (30%)
o Data handling (24%)
o Interfaces, 1/0 (11%)
o Requirement/design compliance; data definition (each 7%)
o Other ,:,de problems (6%)
o Sequence of operations (6%)
o Timing, interruptibility (5%)
o Presentation, standards compliance (4%)

* For documentation anomalies in the after-code design specifica-
tion, prevalent categnries were incorrectness, incompleteness,
and, for Project 3, presentation and standards compliance.

Correlation of these results with development project characteristics led to
the following ooservations.

3.3.1 New Development vs. Modification

The Project 2 development represented a modification to the Project I soft-
ware. The considerably higher number of requirement anomalies for Proj-
ect 2 may reflect a less rigorous requirements definition activity on the

Table 4. Num ber of Anomalies Reported in Each Category

Project
Anomaly Category 1 2 3 4 5 All

Requi rement Specification Anomalies
RI. Incorrect Requirements lb 55 73 16 4 163
R2. Inconsistent Requirements 9 13 16 7 17 62

A R3. Incomplete Requirements 22 27 54 29 b 138
R4. Other Requirement Problems 7 18 15 3 -- 43
R5. Presentation; Standards Compliance 2 3 4 1 -- 1u

Total -5 116 12 56 7 416

Before-Code Design Specification Anoialies
D1. Requirement Compliance . . 10 -- 1 11
D2. Choice of Algorithm, Mathematics . . 5 -- 11 lb
D3. Sequence of Operations 7 7
D4. Data Definition 19 19
D5. Data Handling 18 18
06. Timing, Interruptibility 0 U
07. Interfaces, I1/0 .8
08. Other Design Problems 0. 1 -- I
D. Presentation; Standards Compliance -- - 1 -- U 1

Total U -57-64 E'

Code Anomahees
C1. Requirement, Design Coritpliance 13 6 26 9 2 56
C2. Choice of Algorithm, Nathemtics 79 69 11 17 4b 222
C3. Sequence of Operations 0 4 12 3 16 45
C4. Data Definition 6 22 1 21 6 56
CS. Data Handling 34 62 25 24 32 177
C6. Timing, Interruptibility 24 9 . . 6 39
c. Interfaces, 1/0 -23 21 9 16 10 79
CO. Other Code Problemis 3 6 21 3 13 46
C9. Presentation; Standards Coyliance 3 6 6 1 10 32

Total "I TOO 43

After-Code Design opecifiicateiots i os
Pi. Incorrect Documtentation . . 29 4 52 St
P2. Inconsistent Docuuentation 6 1 2 9

:... P3. Incomplete Docuientati~ii -- - Si 4 10 71
P4. Other Documetation Problems . 11 3 1 15
P5. Presentation, Standards Compliance -- 5b -- 4 b0

Total _

User Docurntation Anoalies 0 2 59 5 0 •l

Other Anomalies 1 2 2 2 13 19

Anomalies in All Categories 249 325 b10 175 316 1b

. >. -24-

modification activity than on the initial development. The two projects had
approximately the same number of code anomalies, with Project 2 having con-
siderably more anomalies in the categories of data definition and data han-

n , dling, and considerably fewer in requirement/design compliance and timing/
interruptibility.

3.3.2 Language Type

Project 5 addressed a program written entirely in assembly language. It is
interesting to note that this project reported the most anomalies of any
project in category C3: "Sequence of operations," an area notoriously more
difficult in assembly language than in higher order language. No other lan-
guage-related results were observed.

3.3.3 Modern Programming Practices

The system evaluated by Project 4 was developed using modern programming prac-
tices. A possible correlation is that Project 4 reported the fewest anomalies
of any project in category C3: "Sequence of operations." This result may be
attributable to the use of program design language and structured programming.
No other trends were observed that could be attributed to modern programming
practices.

.3.4 Anomaly Effects

Figure 4 indicates the number of anomalies on each project that had the poten-
tial to affect software reliability, maintainability, efficiency, and usabil-
ity. The numbers may exceed project totals because of the potential for mul-
tiple effects.

As with anomaly location, discussed in Section 3.2, anomaly effects reflect
each project's charter and objectives. Projects I and 2 were concerned almost
solely with software reliability. As a result, over 90% of the anomalies re-
ported on these projects affected reliability. The other projects were con-
cerned not only with reliability, but with maintainability, efficiency, and
usability as well. Their results present a more balanced picture.

Project 3 was unique in reporting considerably more maintainability than re-
liability anomalies. This was the result of its emphasis on documentation
analysis. The number of reliability and maintainability anomalies for Project
4 were almost the same. Project 5 reported slightly more reliability than
maintainability anomalies.

Overall results show that 65% of all anomalies affected reliability, 54%
affected maintainability, 4% affected efficiency, and 6% affected usability.
On all projects, anomalies affecting efficiency and usability accounted for
only a small percentage of the total number of anomalies. Sections 4 and 5,
which focus on reliability and maintainability anomnalies, therefore discuss
nearly all of the anomalies reported.

-25-

~Lo
4Li

04-

4- V)
wL M

>0) 0._ u

4J)

L 0. Ef

01
4-

41.

4-

04.

cn "4 -4 v-

4:)fOAduopoioad a ewuVjotawn

3.5 Anomaly Severity

Figure 5 indicates the number of anomalies on each project that h~d severity
ratings High, Medium, Low, and Unknown. The overall results for the five
projects show that approximately a tenth of the anomalies received High
ratings, a fourth were rated Medium, and two thirds were rated Low. While the
precise meanings of these ratings vary from one project to another, they are
generally considered to have the following interpretation for the types of
programs considered here:

* High: Threat to life or property
* Medium: Serious threat to mission objectives
* Low: Degraded system performance or non-operational effect

The seriousness of these consequences indicates the significance of the 110
High- and 404 Medium-severity anomalies reported.

There is a connection between the type of anomalies reported on a project and
the severity rating results. Projects 3, 4, and 5, which reported a signifi-
cant percentage of maintainability anomalies, show higher percentages of Low
ratings than Projects 1 and 2, which concentrated on reliability problems. To
arrive at a more accurate comparison, the same analysis was performed using
only the anomalies concerned with program code. Figure 6 shows the results.
The overall figures show that over a tenth of all code anomalies received High
ratings, 41% received Medium ratings, and just over half received Low ratings.
Again, the results varied significantly from one project to another. Extremes
were Project 1, which reported 21% High, 48% Medium, and 30% Low, and Project
4, with 1% High, 12% Medium, and 87% Low. The other projects had severity
ratings closer to the overall average.

3.6 Phase of Anomaly Detection

Figure 7 shows the number of anomalies detected during each development phase.
The results indicate the degree to which IV&V contributed to early detection
of anomalies. Over half of the anomalies were reported before the developer's
testing phase. Project 4 had the most dramatic results, with 89% of all anom-
alies reported before development testing. Project 5's results are also im-
pressive, with 78X of all anomalies detected before the testing phase. Sec-
tions 5 and 6 discuss the benefits of early detection.
3.7 Anomaly Report Acceptance

Figure 8 shows the percentage of anomaly reports on each project that:

* Were accepted by the program office as valid
Were accepted with changes

Li # Were rejected by the program office
s Were withdrawn by the IV&V contractor or superseded by other

reports
, Had unknown acceptance

.27-

- V

i E w
tn 0

W0) 0..V-

4-)

CD 0 0 0C
a a) 00 Cj 00 tz F 03

wr N

430fd uopalodq a Le~uV40 tqw-

aJ 4- ' '
>- W 4'>~

aW 0) S-) .-P
>) u

V) 0~a
M-0 30

0 r-

0)

S- cn

a.

CL

.29-)

CA Cf

CLU
o1 QC (A C

C7 0l' 0I

C CL

UU

oJ C) C
00~E Ll M (

m~ U, *4 N r- -

.30-

W r
0.1 -

4)4 4JS- 3:

0- U- 4J -)Z3

U~ U W) C L

34-'

u0

L4)
I-

0
a

C

3C. 4- 0.)

4-1

0

C 0.
CD Ln0e

POPO~~~~~~d: 4-'loa SWOV4 80uD~

The results indicate the degree to which IV&V results were both valid and
relevant to the software development effort. The acceptance rate on all
projects was high, ranging from 83% to 98%. Taking into consideration anomaly
reports that were accepted with changes, the acceptance rate ranged from 88%
to 98%. Of the anomaly reports for which acceptance was known, 93% were
accepted, an indication of the high validity of IV&V results.

3.8 Anomaly Resolution

Figure 9 shows the percentage of anomalies on each project for which:

e Action was taken
e Action was not taken
, Resolution was open or unknown at the time of the study

Anomalies were considered to have been acted on if they were fixed during the
project, fixed in a program update, negated by an unrelated change, or dealt
with by a work-around solution. Anomalies were considered not to have been
acted on if they were rejected, withdrawn, superseded, or accepted but left
unchanged. Anomalies were considered to have open or unknown resolution if
resolution was deferred to a program update that had not taken place at the
time of the study or if resolution could not be determined.

Projects 1 through 4 have similar profiles, indicating a very high percentage
of anomalies acted on. These results indicate that IV&V results were not only
valid but were sufficiently important to require corrective action. The
atypical figures for Project 5 are attributable to the experimental nature of
the development project. Anomalies reported in the different program versions
did not necessarily require correction. These figures are not typical of most
IV&V projects.

3.9 Data Relationships

Tables 5 and 6 present the results of statistical analyses examining the re-
lationships between selected anomaly characteristics. The chi-square statis-

tical procedure was used. A high chi-square value indicates the possibility
that the two variables are statistically related. The procedure assumes that
there is no association, then computes the probability of observing in re-
peated samples a relationship less pronounced than that in the current sample.
When this probability is less than 5%, there is statistical evidence that the
two variables are related; when it is less than 1%, the statistical evidence
is even stronger.

The chi-square statistics measure the degree of relationship between each pair
of variables. This relationship may or may not be une of cause and effect.
The nature of the relationship may be determined by further examination of the
data.

Table 5 shows the relationship between anomaly severity ratings and anomaly
location, effects, and development phase when detected. The results indicate
a significant relationship between severity and these other anomaly character-
istics. Specific results revealed by examination of the data are as follows:

-32-

Olt

"a 00 -

C 0
0 J -

0~

0 . 4- 0.
Q 0 c

4) 0 S.
+J

4
~) L

4)Q

4) C

-33-

4c 4c~ ic c~4 g
-4 4c c

mt .o 0 '-4 w~'O~.f o wC~jQ i " Lr o tr-C

0; C4 .M !5 .cd V- V- M N ko k. C; * *mi r-. r- 00 M~r- to R,'Rt -OoO
0~ C'J .-4 -E ,-

C.) 4-'

tm 4- 4-)

0) WC

d) 4-)
CL~ C 4- 4-

24- " ua
U)IU (A 4- 0I-

(U 0) 0 wi Q

'I-.~~~~ 0 20. C
434- (1 >L. >1

(o 010 d) w 4-.)m c
coO 0 m= ' C C

02 4J. 'S.,
A1 M0 *'

>L 0. 0)400Au
04J 4-) 0) 0

I- ~A A4-3 4- 4-3 C AfL e *--L AI-C

02 0 .0 (A .- c

020"U '4-) A A L S-02 4-
I- CL 4-) C 1 >) U0j L.C.U 02L-%-.

(AEd AE (a- A4)4-). -C O 0 W JP4 V0 0 0 $-. S.
IAU C 4-) >)v-- '- 4-3 4J = 0O 0D a) a)0) (n 0 C~- ~ e--OO4 ~ 4 4 4- 4J W) W W =M

Cr 4-) - (0)1 . w--e 0) W) fO A A 04-) 4-) 4J 4)4
r- C4-)200 E,... A M (AU 0) W 0 c cCCO

E U 4-1 4-3 0.0ccoo a c26 c 1> -a
a* 0'- 000 ." M -u-"-'- 4-) 4J 4- U0 0)(V 0 02 0)2M CM

LM 1 4- C -r- toto 1 .1 0 U U v'r-- S.Lc a
fu'- (a A E4- .4-)E J IV M 4 ((1 LL0$-u0 C '-r-r-,-.

02- 02^ S0L 20 -t-C CL LS. .. L L. = Z-'- 4 - -r (U 1 10022 GJ L'--0 (U .I.I0uu4- 4- = cra c o)
0i =0 00 E0 0 C.02 (Ufa.0 00a000 U4-4- 3C (1 (U d W 4

ce I u CD 04JU U 0 <W 2 wc

0) (fU 4.JU W %A (U(A# t+- (AIA 0(A A n .c~tA n (A

_ ~ 4-- 4J3E ~ C3~
CC 00 Wj 0000 C-000000 02 0000

u 0 00 0 "0 0
AL L..J t- 4L 4-J) A AL. L 0..) AL A

4-4- 4) o2 o 00 t 20 0 E 000 r= 20 r0
*~r EU > ~ 2P

_j CUr- a. 0 d) (UC-C
0))0) 'O) 4) (U U (cu 0)) (

2: tI xE 2:1 m L L. (A1L L w 2:1.LZ
> 0 0 > 0 0 0 > 0 0

41c 0Mt 4 M MMMt 4 S)0 M M 0)0 0))01 0 M J M C C t

4-1 >'
0~(020 .20

nd d

-34-

) 0 C .) ,- rt-.. o co NDiC "I t.,O C 04
"

oa

LO co LO) m -1d, iO 'R.Lo -4 'o NO'Q 0.-r-

r'-. N N 4-) -

u Q

4-))

V C: C
E' 4- d

0- -) U 0)
V ..) 0,.- -

"00. - 4") F= -- o

S-o

4-- -' >

(V"U 4-) 4

a) 4J -P 0,I-

.. 0 0 C

in .- C O, ¢ ' E ¢ j, . , 1.- "" :I::=
0.. o 0• • A 0

4-C QJ 4.3 t

(U u Ip. - a) 4-n

o w - u , u *e u

a) > 4U S.M 00

4-) OW. O=4- 4- 4 d)-) 0

C O Ci') A

0 40 -D 4- - C
cU CA 00>, 41 V)

S4-)" ' L 0 - ,, D 4-) in 4-)

"-e C-4 S- (V C "a 00

) o l .) I 4- C 4) w- v z -.

A1EU04 . r- r_%0 - 0 0
(a(0 1. -j 4)> to u o ft. 0) S S- 0 S

L1A a 1 AU *-inCA. 'C 0 4)4s 0 0

EE r-0Cr-, - ^ 4/ o M 4- S 4r-E

0 3u a S -a S S- 'P.9 -rII .)

.p-. C PS-llA>,A. in
I

i >, 'O CC .rI I II

cr wo * (1 0'0 - C S. , L-) v 4- c , a A) M)
(U CL 1 0 -4- MJ'' (0 0 ''r 41 S- 0-W a)

E C*e- V lU.) 4-)Q01)X Q)- L J 9 _ Ae A

o ~ UC) -' 'A S 4-)'r) ~ (A- .C (A.
C) 0) OU >) u~ S- 1- >4 > > >i >) >

(U.' 7A4-.' 0k 0U4 4) 4))

W) 4)4 >j U> >>) 4)> 0) Q)(>(M L

4- J4-) 41 4- 4) 4) 4) P-0) 4) 4 4-14 41 4-) 4)4-)
u U 4- U uU u U UU0 QU UU U c uu 0u

4-) 4) s-) L. 4 S-. L.)4 4)0 0). e)
c.4 cCS- S- S. L -1 - &- S-- . S. I. S-.1- 4-) . LS-

tu fu0 0 10 0 0 4'P0 0 00 00 00 '-r-0 00
U U 4-)L U (OLL) (u mu U.0 U ..) I. -0 00u

4-4- U' 4-) 4J -4 '4-) II 4-) 4-)4-)4-) >4-) 4-)4-) > 11 '4))
00. 0 L -00 0-0 00 W 0.-0 0 d) 0- 00

CC.jZ 0.CLZ 0Z~ z e z z A z

I ~ *AO 6 o a A *Ao A A A 1% AO A 0 AO a A

41 4- 'PC QP 'P.414 I.r I) 'P.)P' 4.C 4J 4 4-4.) 4

(D%. a) 0 ? "'I.4w w 0 w w w w a w w O(U4 .04()')
S-4() - a) L4 . L. '1 L.cu - 1.S. 4 -)4) L.L pL)1

u) 0)C 0 U-'-. 0 L) U' 0 U~ 0JUL

0 4) w) 4)) c)

-35-

"!t" i iT

! Code anomalies are more likely to be rated High or Medium than
anomalies in other development materials.

a Anomalies in the after-code design specification and user
documentation are almost always rated Low.

* Anomalies affecting reliability are the only type likely to be
assigned High ratings.

* Most anomalies with maintainability as their primary effect are
rated Low.

* Anomalies detected during the requirements definition phase are
more likely to be rated High than those detected later.

*iAnomalies detected during the coding and testing phases have
severity ratings very close to the overall average of 7.2% High,
26.4% Medium, 66.4% Low.

Table 6 shows the relationship between various anomaly characteristics and
anomaly resolution. Here again, significant relationships exist. Discounting
results attributable to the atypical resolution pattern of Project 5, the fol-
lowing results can be observed from the data:

s Anomalies in all categories are far more likely to be acted on
than not.

Anomalies affecting maintainability and usability, while seea-
ingly less significant than those affecting reliability, have an
even higher probability of being acted on than reliability
anomalies; anomalies concerned with efficiency have a lower
probability.

e Not surprisingly, anomalies with High severity have the greatest
probability of being acted on; the probabilities for Medium and
Low anomalies are approximately equal.

* Anomalies detected during the coding and checkout phase of de-
velopment are the most likely to be acted on.

-36-

4. RESULTS CONCERNING SOFTWARE RELIABILITY

The primary concern of IV&V is software reliability, defined by Boehm as the
extent to which software can be expected to perform its intended functions

?i satisfactorily (Reference 3).* Included within the scope of reliability are:

* Operational Correctness: Ensuring that the software performs
all intended functions satisfactorily and performs no unintended
functions

* Operational Accuracy: Ensuring that mathematical functions are
performed with the required accuracy/precision

e Operational Security: Ensuring that the program is free of un-
authorized coding and incorporates all required measures to
prevent access to software and data by unauthorized persons

The major difficulty in evaluating IV&V's effect on software reliability is
the possibility that the developer may eventually have detected some or all of
the problems reported by the IV&V agency without the latter's help. The fact
that IV&V was the first to find them proves that:

* IV&V is capable of detecting development problems.

* IV&V provides visibility into the development process.

* IV&V finds problems earlier than development testing and may
therefore prevent the schedule slips and cost overruns that
result from late detection.

It does not necessarily prove that without the aid of IV&V, these problems
would have gone undetected into the operational environment.

The ideal experiment for evaluating IV&V's effect on software reliability
would be to have two groups of equally experienced and talented prograinuers
working in equivalent development environments develop the same program using
the same methods and tools. An IV&V group would be assigned to one of the
development efforts, and the resulting programs would be compared for ,e-
liability. If the software that 'had undergone IV&V was more reliable than
that developed without it, it could be concluded that IV&V did indeed have a
positive effect.

The IV&V study was forced to take a far more limited approach, consisting of
surveying the literature for relevant results and examining the data from the
five IV&V projects in light of these research findings. The results of these
activities are described in the following paragraphs.

WB Rni; . W., et al., "Characteristics of Software Quality," TRW Software

Series TRW-SS-73-09, Dec. 1973.

mmm-37-

4.1 Relevant Findings in the Literature

A number of studies have noted the effects of submitting a program to two
or more test and evaluation groups in succession. Proceedings of a TRW
symposium on software development (Reference 4)* reported that on a large
development project, each successive phase of testing followed the same
pattern. Faults were found at a high rate at the beginning of the phase, then
at lower and lower rates as the phase continued. When the program was turned
over to a new test group for the next testing phase, the detection rate jumped
up sharply and the pattern began anew. The report theorized that the dif-
ferent techniques of each test group resulted in the renewed fault detection
rate.

Thayer reported similar findings in a study of five large development efforts
(Reference 5).t He identified as the cause of this phenomenon the expanded
test objectives and fresh viewpoint of each successive test group. In his
study, successive test groups sometimes found more faults than their pred-
ecessors had.

Two other findings of the Thayer study are also worthy of note. The first is
that each test group detected faults that should have been detected in pre-
vious test phases. That is, in addition to those faults detected because of
expanded test objectives, each test group detected faults within. the scope of
previous test efforts, The fresh viewpoint and different test techniques of
each Sroup were considered to be the factors here."

Thke second finding was the tc.ndency of each test group, and in particular each
test analyst, to report several faults of a similar type over a period of a
day or two. Having detected a certain 'ype of fault, the analyst made a
specific search for that type of problem in other parts of the program.
Thayer states that this tendency can have very positive effects on the rate
and completeness of fault discovery, especially if the analyst is intimately
familar with all of the code produced by a given programner.

Studies on the effects of various tools and techniques are also relevant. A
study by Shooman and Solsky (Reference 6)s found that a large proportion
of program faults can bL detected by code inspection without resorting to
computer testing. A study by Rubey (Reference 2) found that analysis methods
detect faults earlier than testing methods but that both methods are needed to

Sdis of the TRW Symposium on Rel iable, Cost-Effective, Securo
ware,' March 19gi4l pp. 5.3-.':

thayer, T. A. et a)., Software Reliability Study, RA4iC-T?{-76-233, Feb. !976.

iShooman, M. L., and Bolsky, 1. I., "Types, Oistribution, and Test Correction
Times for Prografrning Errors,' Procedures of the lnteenat4 onal Co. ferente on
Reliable Software, April 1975, V) p. 3V-357.

. I- V3.

find all types of faults. Finally, Dana and Blizzard (Reference 7)* indicate
that certain tools and techniques are most effective in detecting each type of
fault.

A third set of results concern the benefits of early detection on program re-
liability. Research reported by Finfer (Reference 8)t indicates that:

*,The reliability of a system is greatly affected when problems of
ohe development phase are allowed to go uncorrected into sub-
sequent phases.

Design errors found in integration and system testing have a
much greater impact on reliability than if they had been de-
tected during the design phase.

* "Crash" development and remediation efforts generally result in

poor system design and poor-quality software.

The implications of these findings for IV&V include the following:

* The fresh viewpoint, independent objectives, and specialized
tools and techniques offered by IV&V can be expected to dis-
close software faults not detected by developer testing.

o The manual analysis techniques used by IV&V can be expected to
disclose software faults -not detected by developer testing.

e IV&V analysis and testing combined can be expected to detect
faults in all categories.

The early detection of problems provided by IV&V can provide the
time needed for effective redesign, thereby improving program
reliability.

e The IV&V analyst's intimate familiarity with the program under-
going evaluation should make possible the detection of whole
classes of related faults.

The last phenomenon is a recognized aspect of IV&V. Often called the "clone
effect," it accounts for the detection of numerous anomalies on most IV&V
projects (Reference 9).*

*Dana, J. A., and Blizzard, J. D., The Development of a Software Error Theory
* to Classify and Detect Software Error , Logicon Report R-/4612, May1974.

tFinfer, M. C., Software Data Collection Study, Volume III: Data Requirements
for Productivity and Reliability Studies, RADC-TR-76-329 Vol. 1Ii, June 1976.

*Radatz, J. W., Ramsey, 0. C., and McKillop, T. L., NSCCA/PATE Guidebooks,
Volume Il, Logicon Report R:SED-80204-111, June 1980.

-39-

z '' ' l " " " •- . . .
...... ." , '- , .,'.' ..' .' . -,.- : . I.. " x , ,". . .,

4.2 Project Results

The key questions addressed by the study concerning IV&V's effects on software
reliability were as follows:

* How many of the anomaly reports submitted by IV&V had an effect
on program reliability?

e In what development materials were the anomalies located?
* What types of problems did they involve?
* What aspects of reliability did they affect?
* How severe were their consequences?
* When were they found?
* What was the operational reliability of the completed programs?

The following paragraphs discuss these issues.

4.2.1 Number of Anomaly Reports Affecting Reliability

Of the 1575 anomaly reports submitted on the IV&V projects, 1023 were con-
cerned with software reliability. Broken down by project, the numbers were as
follows:

.e Project 1: 229
e Project 2: 300
e Project 3: 183
s Project 4: 95
e Project 5: 216

Only a subset of these reports had an actual effect on program reliability,
namely, those that were accepted as valid by the program office and acted on
by the developer. Figures 10 and 11 show the percentage of anomaly reports
that met these criteria.

Figure 10 indicates program office acceptance of the anomaly reports concerned
with reliability. On the average, 89% were accepted as written, an additional
2% were accepted with changes, 7% were rejected, 1% were withdrawn or super-
seded, and for 1%, acceptance was unknown. Project 4 had the highest accept-
ance rate, with 98%.

Figure 11 indicates the action taken on reliability anomalies. For reasons
described in Section 3.8, the resolution seen for Projects 1-4 is more typical
of IV&V projects than that shown for Project 5. The average for these four
projects was 79% acted on, 14% not acted on, and 7% unknown or pending.

There is no way of knowing how many of these anomalies would have been de-
tected by the developer without IV&V. The results of the literature search
imply that some at least would not have been. For purposes of the study, the
following assumption was made: Any report that was concerned with program
reliability, accepted as valid by the program office, and acted on by the
developer represents an improvement in program reliability attributable to

,? -40-

pU

so - ,ad

4-U0)3wQ o(s: -
CL MU -0 CL
w. w W=) F 1

U *r-4) U,

U UWr-~ U L

ci 0

4--
0

U

09 1 L)

0% co

-44-)

meU

0 F 0

C.
c0
0 L

a)0

o- 4-) W-

u0) 01

4-l
4-) 4-)

0

0

o 0

s- 0
0.

4-)

0)

0

(Uz 0

0..

-42-

There were 748 such anomaly reports. For convenience, the anomalies they de-
scribe are hereafter referred to as "corrected reliability anomalies." The
breakdown of these anomalies by project was as follows:

Project 1: 188
s Project 2: 216
Project 3: 139
s Project 4: 90
, Project 5: 115

To normalize these figures, they were compared with the number of machine lan-
guage instructions generated by the programs examined. The results are shown
in Figure 12. Project 3 had the highest number, with 3.6 per thousand machine
language instructions; Project 4 had the lowest, with 1.2. On the average,
IV&V resulted in the correction of 2.2 reliability anomalies per thousand
machine language instructions.

4.2.2 Anomaly Location

Anomalies affecting reliability could be found in requirement specifications,
before-code design specifications, code, or other materials such as trade
study reports. Figure 13 shows the number of corrected reliability anomalies
found in each of these development materials. Overall, 33% were found in
requirement specifications, 5% in before-code design specifications, 61% in
code, and 1% in other materials. On Project 5, the only project to perform a
standard design verification, over a fourth of the. corrected reliability
anomalies were in the before-code design specification. The other projects
reported most or all of the anomalies in requirement specifications and code.

4.2.3 Anomaly Categories

Table 7 indicates the number of corrected reliability anomalies found in each
anomaly category. Significant results are as follows:

IV&V resulted in the correction of 245 requirement anomalies
that would have affected reliability. In 38% of these cases
the requirements were incorrect; in another 28%, they were in-
complete. In 21% the requirements were inconsistent; in 12%
they were ambiguous, unfeasible, or otherwise unsatisfactory for
software reliability.

I IV&V resulted in the correction of 448 code anomalies that would
have affected reliability. Over a third concerned an incorrect
or unsatisfactory choice of algorithio or mathematics for the
program. Nearly a fourth concerned incorrect handling of pro-
gram data. An. additional 11% were concerned with incorrect in-

terfaces or program input/output.

* IV&V methods resulted in the detection of code anomalies in all
categories. It could not be determined how many of these
anomalies resulted from the "clone effect."

-43-

II

7 5-

-- 4 -
3.6

2.33- 2.7i,: ;:ii!.2.32.

2.22 2.0

1.2

Project I Project 2 Project 3 Project 4 Project 5 All Projects

Figure 12. Corrected Reliability Anomalies Per Thousand Machine Instructions

-44-

ro ..

u0

4..).

EU -

0) 144).
0. s... u. 0-

U/ 0) (V
C74- '0 M2
4W (U0 -

cc u. 0 s .

4-)

0)0 4-'

EU CL

0)

4-)

~u

S.L.
0)m

-45-

Table 7. Number of Corrected Reliability Anomalies in Each Category

Project
Anomaly Category 1 2 3 4 5 All

Requirement Specification Anomalies
RI. Incorrect Requirements 12 47 32 3 -- 94
R2. Inconsistent Requirements 8 9 12 6 17 52
R3. Incomplete Requirements 16 22 21 9 2 70
R4. Other Requirement Problems 5 15 8 1 -- 29
R5. Presentation; Standards Compliance N/A N/A N/A N/A N/A N/A

Total 41 93 73 19 19 245

Before-Code Design Specification Anomalies
Dl. Requirement Compliance . . 8 -- 1 9
D2. Choice of Algorithm, Mathematics . . 2 -- 7 9
D3. Sequence of Operations 5 5
D4. Data Definition 1 1
D5. Data Handling 14 14
D6. Timing, Interruptibility
D7. Interfaces, I/O 2 2
D8. Other Design Problems
D9. Presentation; Standards Compliance N/A N/A N/A N/A N/A N/A

Total 1. 10 -- 30 40

Code Anomalies
C1. Requirement, Design Compliance 5 3 14 5 1 28
C2. Choice of Algorithm, Mathematics 71 46 7 15 24 163
C3. Sequence of Operations 7 3 9 3 10 32
C4. Data Definition 6 16 1 18 1 42
C5. Data Handling 22 34 16 16 16 104
C6. Timing, Interruptibility 18 6 -- -- 2 26
C7. Interfaces, I/0 17 14 5 9 6 51
C8. Other Code Problems 1 I 2
C9. Presentation; Standards Compliance 4 N/A N N/A N/A N

Total 146 2 66 60 448

After-Code Design Specification Anomalies N/A N/A N/A N/A N/A N/A

User Documentation Anomalies N/A N/A N/A N/A N/A N/A

Other Anomalies 1 -- 3 5 6 15

Anomalies in All Categories 188 216 139 90 i15 748

-6

l~t -46-

1

4.2.4 Aspects of Reliability That Were Affected

The key aspects of software reliability are operational correctness, accuracy,
and security. Figure 14 indicates the distribution of each project's cor-
rected reliability anomalies into these three areas. Totals may exceed the
number of anomalies reported because of multiple effects.

By far the most prevalent aspect was operational correctness. Most of the
anomalies for Projects 1, 2, and 3, and all for Projects 4 and 5 fell into
this category. This preponderance is partly because the other two aspects of
reliability do not apply to all types of software. Accuracy applies primarily
to programs that perform calculations for which various degrees of accuracy or
precision can be achieved. Anomalies concerned with this aspect of reliabili-
ty were reported for Projects 1, 2, and 3. Security applies to software that
can be threatened with unauthorized alteration or misuse. This aspect was
limited to Projects I and 2, and accounted for only a small percentage of the
anomalies on these projects. The greatest effect of IV&V lies in. assuring
that the subject program operates as expected.

4.2.5 Anomaly Severity Ratings

Figure 15 indicates the severity ratings assigned to the corrected reliability
anomalies. The overall figures show that about a tenth of the anomalies
received High ratings, a third were rated Medium, half were rated Low, and for
4%, the severity was unknown. Extremes were exhibited by Project 1, on which
over two-thirds had High or Medium ratings, and by Project 4, on which 85% had
Low ratings. Projects 2, 3, and 5 fell closer to the overall average.

In the context of reliability, these ratings have the following general in-
terpretat ion:

e High: threat to life or property
* Medium: serious threat to mission objectives
* Low: degraded system performance

The seriousness of the High and Medium impacts and the fact that nearly half
of the anomalies had these ratings indicates the importance of these IV&V
results.

4.2.6 Phase of Anomaly Detection

Figure 16 shows the number of corrected reliability anomalies detected during
1 each development phase. Nearly two-thirds of the anomalies were reported be-

fore development testing. On Project 4, 93% of the anomalies were reported
before the testing phase; on Project 3, 81%. All projects except Project 1
reported well over half of their corrected reliability anomalies before de-
velopment testing.

The significance of these findings lies in the results reported by Finfer:
Early detection of anomalies provides time for effective redesign, thereby
improving program reliability.

-47-

4 - ' -: > :::.:i .-: . .. - ,

U)

SV)

0 00

S.. S .

CL CA.C
0~~. C) 0

0)V)

0 0
S.-

CA

CL)

LnU
41

(V

0 u

0.L 4-
4-

(A)

U.

-48-

NONE

r0)4-) >4-
0) S->

a) 3~

0 c)

CD0 a 0 0

-49-

cu

4-)

4-) 4)

im

'I-,C

CL

(~u

.

4-

a)

-500

4.2.7 Operational Performance of the Completed Programs

To assess the reliability of the completed programs, the following questions
were considered by the development project questionnaire:

How many problems have been reported since the program became
operational?

If the program has been modified, was it due to operational
problems, requirement changes, or other reasons?

The responses were as follows:

e For the Project 1 software, four problems were reported in
operational use. When the software was modified, however, the
purpose was to respond to requirement changes rather than to
correct any operational problems.

* For the Project 2 software, no problems were reported in opera-
tional use. The software was modified to respond to requirement
changes.

e No usable responses were given for the Project 3 software;
records of its performance were combined with those of inter-
facing programs and could not be separated out.

* For the Project 4 software, no operational problems had been
reported, and the software had not yet been modified.

* The Project 5 software had not yet been put into operational
use; its operational performance and maintenance needs were
therefore unknown.

For the three projects for which data was available, therefore, none had re-
quired modification to correct a reliability problem encountered in the opera-
tional environment. There is no way to establish that IV&V was responsible
for this high reliability. It is safe to say, however, that with an average
of 150 anomaly reports per project having a direct bearing on the improvement
of reliability, IV&V made a significant contribution.

-51-

5. RESULTS CONCERNING SOFTWARE MAINTAINABILITY

The overall cost of a software product may be far greater than the cost to
develop it. Figures cited by Miller (Reference 10),* Fife (Reference 11),t
and others indicate that soft~are maintenance cost--the cost of modifying a
program after it has become operational--may account for up to 70%-75% of its
total life cycle cost. A 1976 paper by Prokop (Reference 12)* stated that
two out of every three Navy programmers and computer systems analysts were
involved in maintaining existing software. Nolan and Robinson (Reference
13)** have found that all data processing organizations eventually reach a
stage in which 70% of the effort fs devoted to maintenance activities.

Modifying existing software is a difficult, error-prone process. A study by
McGonagle (Reference 14)tt reports that 19% of all errors detected in the
software of one organization resulted from unexpected side effects to other
changes. In Reference 15,** Boehm reports that even for small modifications
(1 to 10 instructions), the chance of a successful first run is at best 50%,
and for larger changes, the success rate decreases steadily to about 15%.
Lehman (Reference 16)*** states that software tends to become more and more
complex with each change, making each modification more difficult than the
last.

Increasing awareness of both the likelihood and the difficulty of software
maintenance has resulted:-,f new attitudes toward software development.

WM-i1TeC. R,, "Software Maintenance and Life Cycle Management," Software
Phenomenol ogy--Worki ,q Papers of the Software Life Cycle Management Work-

7 I.use, uq.1977p 3-59.

,ife, D. W., "Software Management Standards," Software Phenomenology-
Workin-- Paprs of the Software Life CycleMana ntorsop, AiTI

ug. 1977,p
*Prokop, J., Computers in the. ,ay, Annapolis, MO, Naval Institute Press,

1976.

**Robinson, t0. , "Beyond the Four Stages: What Next," Software Pheno-
menoloy--Working Papers of the Software Life Cycle Manag it e rk6h Op,
Airlie House, Aug. 1977, pp. 1"01.

ttMcGonaglu, J. .,, A Study of a Software DeveloppMiont Project, James P.
Atgerson and Co., SeptT i.

4480oehm, B. W., "Software and Its Impact: A Quantitative Assessment,"
Oatamation, May 1973, pp. 48-59.

***Letfmain, M M., "Evolution Dynamics--A Phenomenology of Software Mainten-
ance,'" Software Phenomenology--Workino Papers of the Software Life Cycle
14anag1ellent Workshot''AiFlie House, Aug. 1977, pp. 313-323.

~-53-

A.,,.-

Delivered software is no longer viewed as a finished product not intended for
change. Instead, it is assumed that the operational environment will be
dynamic and that software will be required to change along with it. The re-
sult is increasing emphasis on software that is not only reliable, but main-
tainable as well.

The following approach was taken to investigate the effect of IV&V on software
maintainability:

0 Identify from the literature software attributes that have been
shown to contribute to maintainability.

* Formulate hypotheses about IV&V's potential to affect these
attributes.

* Analyze the results of the five IV&V projects in light of these

hypotheses.

The results of these activities are described in the following paragraphs.

5.1 Software Attributes That Contribute to Maintainability

Software maintenance may be performed to remove or correct a software fault,
to add new features or capabilities, to delete unised or undesirable features,
or to adapt the software to hardware changes (Reftirence 17).* Regardless of
the motivation for change, however, the maintertance process consists of under-
standing the existing software, making the needed changes, and revalidating
the modified software (Reference 18).t Soitware that has been designed,
coded, and documented in a way that facilitates these tasks is said to be
"maintainable."

According to Peercy, the three basic attributes of maintainable software are:

* Understandability: The ease with which the purpose and organi-
zation of the software can be grasped

Modifiabilijty: The ease with which changes can be incorporated
once the nature of the desired change has been identified

Testability: The extent to which the software supports evalua-
ftion of its performance

*Peercy, 0. E., A Software Maintainability Evaluation Methodology," Proceed-

ings of the AIAA 2nd Computers in Aerospace Conference, Oct. 1979, pp. _-31T-

tBoehm, B. W., "Software Engineering," IEEE Transactions on Computers, Dec.

1926, pp. 1226-1241.

-54-

4r~,',,.

To these three characteristics Neil and Gold (Reference 19)* add:

l Portability: The ease with which a software product can be
transferred from one computer environment to another

Specific software features contribute to each of these attributes. Features
that contribute to understandability include complete, accurate documenta-
tion, good traceability between code and requirements, and code and design
that are modular, self-descriptive, noncomplex, and consistent. Features that
contribute to modifiability include data structures designed to allow for ease
of expansion and change, code and data structures that minimize the side
effects of changes, and documentation that corresponds to the code and is
modular in nature. Features that contribute to testability include software
structures that isolate the effects of changes, program instrumentation, and
complete, accurate documentation. Features that contribute to portability
include device independence, use of higher order language, and minimization of
interfaces with other systems. Appendix C identifies more specifically a
variety of features that contribute to software maintainability.

5.2 IV&V's Potential for Improving Maintainability

Software maintenance is rarely performed by the original programmer. More
typically, a person unfamiliar with the program must study the code and its
documentation until he understands the program well enough to make the needed
changes and to devise test cases toerequalify the program.

The similarity of this process to the IV&V process is striking. The IV&V
analyst must study the documentation and code until he becomes sufficiently
familiar with the program to follow the progravier's thought processes, detect
logical flaws, identify situations that the prograniner may have failed to con-
sider, and devise test cases to thoroughly test the program.

The objectives of the maintenance prograiner and the IV&V aralyst differ. The
maintenance progranviter wants to modify the program, the IV&V analyst to eval-
uate it. The similar preparations that b oth must make to perform these func-
tions, however, suggest that the IV&V analyst is in an excellent position to
assess software maintainability. The following paragraphs explore this hy-
pothesis by addressing each of the four major aspects of maintainability and
the special case in which IV&V is applied to a maintenance effort. A conciud-
ing paragraph discusses indirect effects of IV&Vs assessnnt of software
reliability.

5.2. 1 Understandability

Understandability is as crucial to the IV&V analyst as it is to the mainte-
iance programmer. In the analyst's efforts to become familiar with the
requirement and design specifications, he notices incompleteness, inconsis-

iWiI, and Gold, H. I., Software Acquisition. Management Guidebook: Soft-
wart, Quality, Assurance, ESO-YR-77-255$ Atig, 1977.

T.I

lll l +I

tencies, inaccuracies, ambiguities, unclear presentation, and other problems
of this type because they hamper his own efforts to understand the software
system. Similarly, during the detailed code analysis that is central to IV&V,
such problems as inadequate or incorrect comments, unstructured or unmodular
code, complex constructs, and obscure logic present the IV&V analyst with the
same difficulties they would present the maintenance programmer. Assessing
understandability is therefore a natural part of IV&V; the findings can be
reported if the program office so chooses.

5.2.2 Modifiability

According to Peercy, modifiability consists of understandability plus expanda-
bility, where expandability is the extent to which a physical change to in-
formation, computational functions, data storage, or execution time can be
easily accomplished. Software features that contribute to expandability
include a reasonable margin of storage space and processing time, extra fields
in data files, parameterization of constants and data structure sizes, and
documentation that will easily accommodate change.

Although few if any IV&V projects have been chartered to evaluate software for
modifiability, anomalies concerning this trait are often reported under the
category "poor programming practices," and the potential to expand this eval-
uation certainly exists. Data bases that are being examined for accuracy
could be simultaneously evaluated for expandability. Code being examined for
correctness and efficiency could also be evaluated against a set of criteria
known to enhance expandability. Documentation being examined for correctness,
completeness, and consistency could also be evaluated for the type of modu-
larity and traceability that enhance expandability. Drawing. from a list such
as that given in Appendix C, a set of explicit modifiability criteria could be
developed against which the software was to be evaluated. Manual analyses of
code, data, and documentation would then include these criteria along with
those normally used. Special tools to evaluate certain features might also be
developed.

5.2.3 Testability

Peercy defines testability as understandability plus instrumentation, where
instrumentation is the extent to which software contains embedded test aids or
has been implemented to allow the use of external test aids. Embedded aids
imight include assertions or execution monitoring statements; external test
aids might include drivers, monitors, simulators, or teet case generators.

An important aspect of IV&V requirements verification is evaluation of each
requirement for testability. Considered in the evaluation are the rlarity,
quantifiability, and feasibility of each requirement. While evaluation of the
design and code for testability has not traditionally been included it the
IV&V charter, here again, the potential exists. If the code has been instru-
merited with assertions indicating expected conditions on inputs, outputs,
program variables, or other program aspects, the analyst could evaluate
the completeness and quality of these embedded test aids. If it does not con-
tain such instrumentation, recommendations could be made for ways to include
assertions or to acconvnodate external test aids. Software structures could be

-56-

N
4

. ' , , I " .: ,. .. _ ..4. ..-

evaluated for their ability to isolate the effects of change. These and other
testability criteria could be developed, and deviations could be reported in
anomaly or other types of reports.

5.2.4 Portability

Portability contributes to maintainability by reducing the need for modifica-
tion when new equipment is introduced or when the software is transferred to a
new environment. Important aspects of portability are the use of a higher
order language and minimization of equipment dependencies. Even when these
measures are adopted, however, portability is difficult to achieve. Differ-
ences in computer word sizes make compatibility between some systems very
difficult to achieve. Small segments of assembly language tend to appear in
programs that are supposed to be written in higher order language. Higher
order languages, despite their claims of portability, have been adapted to
particular computer systems.

From the point of view of IV&V, portability is a trait that can be evaluated
quite effectively. Guidebooks exist (e.g., Reference 20)* which identify
higher order language constructs that are truly hardware independent. Cri-
teria can be established to evaluate device independence. Evaluation of code
for portability could be included as part of the code verification process.

5.2.5 IV&V of Maintenance Efforts

The preceding sections were concerned with software development. Another
aspect of the maintainability issue is ensuring that software undergoing
maintenance does not become less maintainable than it was before.

In his survey of software maintenance technology (Reference 21),t Donahoo
cites the following four issues as the major concerns in software maintenance:

1) Lehman's "Law of Increasing Entropy": The complexity of a pro-
gram tends to increase with each modification, making mainten-
ance more difficult each time, unless specific effort is applied
to stop this trend

2) The tendency for correction of one problem to cause others to
appear

3) The question of how much of the program to retest after modifi-
cation

Georgh D. L., Guidelines for Progranoing in Portable Fortran, Logicon
Report No. DS-R78069, Sept. 1978.

tDonahoo, J. U., A Review of Software Maintenance Technology, RADC-T,-80-13,
Feb. 1980.

-57-Ii

I
4) The tendency for program documentation not to be updated to re-

flect the changes made

Issues 2 and 3 are concerned with the reliability of the modified software.
These issues are always addressed in the IV&V of maintenance efforts. Issue
4, concerned with continued maintainability, is also inherent in the IV&V
process, through the documentation verification activity. While Issue 1 has
not traditionally been included in the IV&V charter, it has been addressed
informally with the reporting of poor programming practices. By directing the
design and code verification activities to report all unwarranted increases
in complexity, such as those caused by artificial localization of changes, the
program off-ice could focus attention on this problem and ensure that the
resulting software was not only as reliable, but also as maintainable as it
was before.

5.2.6 Indirect Effects on Maintainability

IV&V's evaluation of software reliability has the added effect of enhancing
the maintainability of the subject program. The improved reliability of the
software makes it less likely to require modification once in the operational
environment, and the early detection of anomalies provided by IV&V allows time
for effective redesign rather than "kluge" solutions, which can make the soft-
ware overly complex, nonmodular, and difficult to understand.

5.3 Project Results

Data from the projects surveyed provided answers to the following questions:

How many of the anomaly reports submi tted by IV&V had a direct
effect on software maintainability?

9 What development materials did they involve?

e What types of problems did they report?

* What were their severity ratings?

s What aspects of maintainability would have been affected?

What were the indirect effects resulting from reliability eval-
uation?

The following paragraphs discuss these issues.

5.3.1 Number of Anomaly Reports Affecting Maintainability

Of the 1575 anomalies reported on the IV&V projects, 854 were concerned with
software maintainability. The number of these anomalies on each project was
as follows:

-58-

. Project 1: 66
* Project 2: 135
* Project 3: 371
* Project 4: 97
* Project 5: 185

Many of these anomalies had maintainability as one of several effects. Such
anomalies were usually reported for some reason other than maintainability and
had maintainability as a secondary effect. It was instructive, therefore, to
single out the anomalies that had maintainability as their only effect. There
were 347 such anomalies, broken down as follows:

* Project 1: 10
* Project 2: 9
* Project 3: 211
* Project 4: 47
1 Project 5: 70

This breakdown shows dramatically the results of different project objectives.
Projects 1 and 2 were concerned almost solely with software reliability. They
reported maintainability anomalies only when these might result in reliability
problems in future program versions. Project 3 performed extensive documenta-
tion analysis aimed at detecting maintainability problems. Project 4 was
discouraged from reporting documentation problems in anomaly reports. Project
5 performed some documentation analysis, but had limited emphasis on maintain-
ability.

Of the 854 anomaly reports cited above, those that were accepted by the pro-
gram office and acted on by the developer had a direct effect on software
maintainability. Figures 17 and 18 indicate program office acceptance of the
two types of maintainability reports. Figure 17 shows that for all maintain-
ability reports, an average of 90% were accepted, 3% were rejected, 0% were
withdrawn or superseded, and for 6% acceptance was unknown. Figure 18 shows
that for anomaly reports concerned solely with maintainability, an average of
94% were accepted, 1% were rejected, 0% were withdrawn or superseded, and for

as 5% acceptance was unknown. Projects 3 and 4 had 100% acceptance of maintain-
4 ability-only reports. The projects that were less concerned with maintain-

ability had somewhat lower rates. Even on these projects, however, acceptance
was high enough to indicate the overall validity of the findings.

Figures 19 and 20 indicate the action taken on the two types of maintainabili-
ty anomalies. Figure 19 shows a pattern similar to that observed for relia-
bility anomalies, namely, Projects 1-4 exhibiting similar profiles and Project
5 being markedly different due to the experimental nature of the development
project. For Projects 1-4, an average of 80% of the anomalies were acted on,
9% were not, and 10% had resolution still open or unknown. Figure' 20 shows
the resolution of anomalies that had maintainability as their only effect.
Projects 2, 3, and 4 show high rates of corrective action; Projects 1 and 5
show lower rates. Overall, 79% of these anomalies were acted on, 10% were
not, and resolution of 11% was still open or unknown at the time of the
study. Thus, while maintainability anomalies may have had a lower priority

-59-

m e -i4. ,! T

"a
+) (A (

S.- 4-

(Iw C./)

c0 . a

0.U 4-)0V

4-.-

Q.-

00

I-.

0
CL

0 0

4--
0

4J 4J

(U

I-

c) U.

0.

CD 0 0 0 0 0 0 0oo o'tI..~n %: m N

43oatd uo polaodab sal~ewouV Kjtvuzp jo a6vlUaad

-Go-

cn.
4 J
U

~

0

~

I-

I.-

0) _______

0) -U0) - I

S.. 0) 3 4-~
0. U *r

*--- 0)
* CA ~

E~ 0
S.-

4-~+~ S.. 3 .7-.
3

U ~) -P .~

U 0)~ ~ ~ w
I-

~ u 0
0)*r~ -o
0 w
S.-

5-
0)

4 U

0

3 0

0)
S..

_________________________ 0..
I-

E
0

4.2
0
0)
U

0)
U
U

c3 U -
01

S.-
______________________ cL

*1~

U-

~OAd 4~ -

sa~.Lewouv ~LuO-~;L~q~UI.e1Uj.ew

-61-

06
r- 0a

V 0

a)

O 0 c

CC

.~CL0

2,- F-r u u

3-

I 0 0

mi <

4-) 4-

.5L- 4-)

0 '
(A

Q)

0i

4..) 0
U (n

l~aP~d o plioeb S LeOUVklqqvuilutW A aflug a

oL a-
c 0

a) a)O f

0.

I-.

00

~ .0

a) 0

0

4.1

0 C)

-63--

than those concerned with reliability, they were considered important enough
on three of the projects to have a high rate of corrective action.

The total number of anomaly reports that were concerned with maintainability,
accepted as valid, and acted on by the developer was 645. These reports rep-
resent the direct contribution of IV&V to the maintainability of the subject
programs. The breakdown of these anomalies, hereafter referred to as "cor-
rected maintainability anomalies," was as follows:

s Project 1: 48
s Project 2: 108

:0 Project 3: 330
, Project 4: 82
a Project 5: 77

Singling out the anomalies that affected maintainability only, the total was
276, broken down as follows:

* Project 1: 3
s Project 2: 7
* Project 3: 20?
a Project 4: 45
e Project 5: 14

These anomalies are hereafter referred to as "corrected maintainability-only
anomalies." The remainder of the analysis is concerned with these two sets of
anomalies.

5.3.2 Anomaly Location

Anomalies affecting maintainability may be found in requirement specifica-
tions, before-code and after-code design specifications, code, user documenta-
tion, and other materials. Figure 21 shows the number of corrected maintain-
ability anomalies and corrected maintainability-only anomalies found in each
of these materials.

Over half of the corrected maintainability anomalies were in requirement
specifications. Correction of these anomalies enhanced maintainability by
making it easier to understand the functions and organization of the program
and to devise new test cases. A third of the anomalies were in the before-
code and after-code design specifications. Correction of these problems miade
it easier to grasp the program design and to determine how to wake the needed
changes and devise test cases. Twelve per cent of the anomalies were in the
code itself. Their correction resulted in code that was traceable to require-
ments, more efficient, less complex, better cotricented, and easier to under-
stand, modify, and retest.

5.3.3 Anomaly Categories

Table 8 indicates the number of corrected maintainability anomalies found in
each anomaly category. The left-hand set of figures applies to CM such

-64-

4-)
0 L) 0

C W

0 c0 0

4-) -'
cL) tv C

04- *>)
--- 4- 4-)

4-) U -r-r-0

(4 W U-0 C~

4- on) ccC0

u 4-'4-
mO 0 * 4--*e-

~fl 00

4- CU

W)I U04-)

or 4- 0 4-) S.. M

0 0+-0

wU-

J 3

IA

'ialyie. 0 mg

0)
r,

0~0

Q)

0z 0 N

Cd L-

0 0 0 0 0 0 0 0

POcd UQ SOW4WOUVJ Kl qupuq polauo3 4o .AaqwnN

Table 8. Number of Corrected Maintainability Anomalies in Each Category

Corrected maintainability Corrected Maintainability-
Anomalies Only Anmalies
Project Project

Anomaly Category 1 2 3 4 5 All I 2 3 4 b All

Requirement Specification Anomalies
RI. Incorrect Requirements 14 49 66 15 1 145 -- 1 18 12 -- 31
R2. Inconsistent Requirements 9 9 13 7 17 55 -- 1 -- 1
R3. Incomplete Requirements 14 22 46 27 3 112 23 14 - 37
R4. Other Requirement Problems 4 13 11 3 -- 31 . . 2 2 4
R5. Presentation; Standards Compliance -- 1 4 1 -- 6 . . 1 1 - 2

Total 41 -R W4 _M -ff M -T 79 -9

Before-Code Design Specification Anomalies
Dl. Requirement Compliance . . 4 - 5
02. Choice of Algorithm, Mathematics 7 7
03. Sequence of Operations 5 5
04. Data Definition 1 1
05. Data Handling 14 14
06. Timing, Intorruptibility 2 2
07. Interfaces, 1/0
U8. (ther Design Problems 1 -- 1 2 1---- 1
09. Presentation, Standards Compliance

Total . .- - "3- . . .

Code Anomalies
Cl. Requirement, Design Compliance 3 1 13 8 1 26 2
Ce. Choice of Algorithm, Mathematics 2 3-5 -- I-1
C3. Sequence of Operations -- -- . -. 1 .. .
C4. Data Definition -- 3 1 3 -- 7 - -2 2
C5. Data Handling 1 1 -- -- 1 3 1 1 . . 1 3
C6. Timing, Interrutlibility
C7. Interfaces, i/0 1 -1 1
C8. Other Code Problms 1 2 10 1 11 25
C9. Presentation, Standards Compliance -- 4 2 4 1 11 -, 2 2 4 1 9

Total --7 - 77 7 -T 7X - - - 2 -TO

After-Code Design Specification Anomalies
P1. Incorrect Documentation . . 29 4 11 44 -. 29 4 11 44
P2. Inconsistent Documentation 6 1 - I -. . 6 1 - 7
P3. Incomplete Documentation 5. 57 4 1 62 .- .. 5? 4 1 62
P4. Other Documentation Problems . . 10 3 -- 13 . . 10 3 -- 13
PS. Presentation. Standards Compliance -- - _ 56 -.- 56 5--_ 56 6 -

Total

User Documentation Aomalies

Other Anomalies

Total Anomalies ln All Catugorles 4 108 330 82 7 646 3 7 207 45 14 216

: 66

anomalies; the right-hand set applies to the anomalies concerned with main-
tainability alone.

There werE 349 requirement specification anomalies that would have affected
maintainability if they had not been corrected. Most prevalent among these
were incorrect requirements, which accounted for 42%, and incomplete re-
quirements, which accounted for 32%. Seventy-five of these anomalies had
maintainability as their only effect. These anomalies, reported only on
Projects 3 and 4, coicerned cases in which the requirement specifications had
not been updated to reflect the program as implemented. Again, the two most
prevalent categories were incorrect and incomplete requirements.

Design verification performed by Projects 3 and 5 disclosed 36 anomalies that
would have affected maintainability if they had not been correct,-d. Most
prevalent were errors in the design specification's descriptions of program
data handling. Only one of the 36 anomalies had maintainability as its only
effect. This anomaly concerned a questionable design feature to be incor-
porated in a future update.

Seventy-nine code anomalies would have affected maintainability if they had
not been corrected. Most prevalent were cases in which code was not traceable
to the requirements or design and cases of inefficient or ext-aneous code,
shown under Category C8. Eighteen of the code anomalies had maintainability
as their only effect. Most prevalent here were cases involving incorrect and
incomplete conmients and violations of development practices. Also included
were several latent errors, that is, cases in which the program was coded in-
correctly, but happened to work satisfactorily in the current version.

There were 182 corrected omaintainability anomalies in after-code design spec-
ification, all having maintainability as their only effect. Most prevalent
were instances of incxnplete docurentatlon. Problems with presentation of
information and incorrect documentation were also coeon.

5.3.4 Aionaly Severity

Severity ratings for all five proJects were based on the impact ae anomaly
would have on program performance. As a result, anomalies tlat had as their
only effect decreased maintainability were almost always rated Low. The few
exceptions resulted from the fact that severity ratings were assigned to
entire anoaly reports, rather than to parts thereof, and nintainability
anomalies occasionally received a higher severity ratinq by association with
aonoalies affecting reliability. Severity ratings for t e anomalies that ad
iaintainability as one of several effects are not meani:ijful here because the
ratings were generally assigned on the basis of other effects.

5.3.5 MaintainabilIty Attributes Affected

Section 5.1 identified as the four basic attributes o't maintainable software
understandability, modifiability, testability, and portability. It is in-
eiesting to ask which of these attributes were affected by the detection and

correction of iarintainability anomalies on the five IV&V projects.

167 ,!-6?-

The four basic attributes are not mutually exclusive. As described in Sec-
tion 5.2, modifiability consists of understandability plus expandability;
testability consists of understandability plus instrumentation. Any anomaly
report that contributes to understandability therefore contributes to modifia-
bility and testability as well.

To determine more precisely the effects of the maintainability anomalies, each
one was examined in terms of its effect on understandability, expandability,
instrumentation, and portability. These traits are mutually exclusive and
therefore more readily analyzed.

The answer in almost all cases was understandability. Maintainability anom-
alies were almost universally concerned with:

* Documentation that did not describe program requirements or de-
sign completely or accurately

* Code characteristics that would make it difficult for a main-
tenance programmer to grasp program logic or to trace the logic
to requirements or design

Only 10 anomalies had an effect other than understandability. These anom-
alies, concerned with poor programming practices or latent errors, affected
expandability. They would make changes more difficult than necessary or make
it possible for program changes to have unexpected sideeffects.

The predominant effect of IV&V on software maintainability was therefore in-
creased program understandability, and therefore enhanced modifiability and
testability as well. The analysis showed that IV&V can be an effective tool
for increasing software maintainability.

5.3.6 Indirect Effects of Reliability Evaluation

Section 4 described 748 reliability anomalies corrected as a result of IV&V.
Correction of these anomalies improved not only program reliability, but also
program maintainability. By detecting the 748 problems before the software
went into the operational environment, IV&V helped to prevent the need for
corrective maintenance of the software. By detecting 447 of the problems be-
fore development testing, IV&V allowed the developer extra time for anomaly
correction, reducing the possibility of poorly designed corrections that could
hinder maintenance efforts.

-68-

,,"* ,'.. "p . ". . .' .i.j "' - ' . .

The four basic attributes are not mutually exclusive. As described in Sec-
tion 5.2, modifiability consists of understandability plus expandability;
testability consists of understandability plus instrumentation. Any anomaly
report that contributes to understandability therefore contributes to modifia-
bility and testability as well.

To determine more precisely the effects of the maintainability anomalies, each
one was examined in terms of its effect on understandability, expandability,
instrumentation, and portability. These traits are mutually exclusive and
therefore more readily analyzed.

The answer in almost all cases was understandability. Maintainability anom-
alies were a.most universally concerned with:

0 Documentation that did not describe program requirements or de-
sign completely or accurately

o Code characteristics that would make it difficult for a main-
tenance programmer to grasp program logic or to trace the logic
to requirements or design

Only 10 anomalies had an effect other than understandability. These anom-
alies, concerned with poor programming practices or latent errors, affected
expandability. They would make changes more difficult than necessary or make
it possible for program changes to have unexpected side effects.

Trhe predominant effect of IV&V on software maintainability was therefore in-
creased program understandability, and therefore enhanced modifiability and
testability as well. The analysis showed that IV&V can be an effective tool
for increasing software maintainability.

5.3.6 Indirect Effects of Reliability Evaluation

Section 4 described 748 reliability anomalies corrected as a result of IV&,
Correction of these anomalies improved not only program reliability, but alt
program maintainability. By detecting the 748 problems before the softwart,
went into the operational environment, IV&V helped to prevent the need f6r
corrective maintenance of the software. By detecting 447 of the problems be-
fore development testing, IV&V allowed the developer extra time for anoinal'
correction, reducing the possibility of poorly designed corrections that could
hinder maintenance efforts.

-63-

• ..

The four basic attributes are not mutually exclusive. As described in Sec-
tion 5.2, modifiability consists of understandability plus expandability;
testability consists of understandability plus instrumentation. Any anomaly
report that contributes to understandability therefore contributes to modifia-
bility and testability as well.

To determine more precisely the effects of the maintainability anomalies, each
one was examined in terms of its effect on understandability, expandability,
instrumentation, and portability. These traits are mutually exclusive and
therefore more readily analyzed.

The answer in almost all cases was understandability. Maintainability anom-
alies were almost universally concerned with:

* Documentation that did not describe program requirements or de-
sign completely or accurately

* Code characteristics that would make it difficult for a main-
tenance programmer to grasp program logic or to trace the logic
to requirements or design

Only 10 anomalies had an effect other than understandability. These anom-

alies, concerned with poor programming practices or latent errors, affected

expandability. They would make changes more difficult than necessary or make

it possible for program changes to have unexpected side effects.

The predominant effect of IV&V on software maintainability was therefore in-

creased program understandability, and therefore enhanced modifiability and

testability as well. The analysis showed that IV&V can be an effective tool

for increasing software maintainability.

5.3.6 Indirect Effects of Reliability Evaluation

Section 4 described 748 reliability anomalies corrected as a result of IV&V.

Correction of these anomalies improved not only program reliability, but also

program maintainability. By detecting the 748 problems before the software

went into the operational environment, IV&V helped to prevent the need for

corrective maintenance of the software. By detecting 447 of the problems be-
fore development testing, IV&V allowed the developer extra time for anomall,

correction, reducing the possibility of poorly designed corrections that could

hinder maintenance efforts.

-63-

e Hypothesize for the selected factors which ones would be af-
fected positively and which negatively by IV&V

* Tie in study results to test the hypotheses with actual data
and to quantify results where possible

The results of the first three steps are given in Table 9. The following

paragraphs discuss these results.

6.1 Factors Affecting Development Cost/Productivity

Table 9 identifies 125 cost/productivity factors described in the literature.
They have been divided into 11 basic categories:

* The nature of the software to be developed
e Special requirements imposed on the software
e The quality and stability of the requirements
The quality and stability of the design
e The quality and stability of the code
* Personnel and organization
e Development methodology used
* Development facilities available
a Project management
* Amount of nonproductive activity performed
e Cost factors unrelated to productivity

The left-most column identifies one or more references in which each factor
was found. When more than two ref arences cited a given factor, only the first
few encountered were included in the table.

6.2 Factors Affected by IV&V

The right-hand columns of Table 9 present the study's hypotheses as to the
potential effect of IV&V on each of the cost/productivity factors. The pos-
sible responses are:

" "Positive," meaning that IV&V has the potential to increase
progranuner productivity or decrease cost with respect to the
factor

* "Negative," meaning that IV&V has the potential to decrease
progratnver productivity or increase cost with respect to the
factor

* "None," meaning that little or no effect could be envisioned
under nonal circumstances

The must striking finding is that for 90 of the 125 factors, [V&V was consid-
ered to have no effect at all. This finding shows that the benefits of IV&V
can be obtained without placing a significant amount of overhead on the devel-
opment process. Ruled out were all factors under "the nature of the software
to be developed" and most factors under "special requirements imposed on the
software," personnel and organization," "development facilities," and "costs

- 70}-

Table 9. Factors Affecting Development Cost/Productivity

Potential Effects of IV&V

References Factor Positive Negative None

A. The Nature of the Software to be Developed

23, 24 A-1. Type of application X

23, 25 A-2. Degree of innovation required X

25, 26 A-3. Size of the software X

8, 27 A-4. Data base size/complexity X

25 A-5. Number and complexity of 1/0 formats X

23 A-6. Data management techniques to be used X

23 A-7. Multiple-site installation X

15, 25 A-8. Extent of decentralization and number X
of interfaces

23, 27 A-9. Real-time requirements X

28 A-10. Reimplementation of existing software X

25 A-11. Number of other components and sub- X
systems bein,9 developed concurrently
as part of the system

B. Special Requirements Imposed on the Software

23, 26 B-1. Quality requirements

s Reliability requirements X
* Maintainability requirements X
* Efficiency requirements X
s Integrity requirements X
e Usability requirements X
* Testability requirements X
s Portability requirements X
* Reusability requireents X
* Interoperability requirements X
* Transportability requirements X

23, 25 0-2. Requirements for special displays and X
interfaces with special equipment

23 8-3. Testing requirements X

8, 27 8-4. Docuovntation requirements X

27 U-5. Percentage of code to be delivered X

-71-

. ,;. -.'N. " -

Table 9. Factors Affecting Development Cost/Productivity (continued)

Potential Effects of IV&V

References Factor Positive Negative None

25, 27 B-6. Overall constraints on program design X

23, 27 B-7. Constraints on program size X

23, 27 B-8. Constraints on program speed X

8 B-9. Requirement to install the system at X
a site other than the development site

C. Quality and Stability of the Requirements

27 C-i. Customer experience:

o With the application X
o With data processing X

23, 27 C-2. User participation in requirements X
definition

25, 27 C-3. Programner participation in require- X
ments definition

23 C-4. Effectiveness of communication among X
user, customer, developer, maintainer

&3, 23, C-5. Coapleteness, accuracy, and clarity K
26, 29 of requirement specifications

23, 30 C-6. Level of change in requirements X X
duringj development

23, 30 C-7. Phase in which reqireiment changes X
occur

U..Quality andStabfity of thie Uesion

3 0-1. Accuracy of translation from require- X

mwfts to design

a, 23 U-2. Quality of the desig X

15, 23)-3. Amount of changes to the design X

3, 27, 30 J-4. Timing of design chages X

-72-

Table 9. Factors Affecting Development Cost/Productivity (continued)

Potential Effects of IV&V

References Factor Positive Negative None

E. Quality and Stability of the Code

23 E-1. Accuracy of translation from design to X
code

8, 23 E-2. Quality of the coded program X

15, 23 E-3. Anount of code changes needed X

8, 27, 30 E-4. Timing of code changes X

F. Personnel and Organization

F-i. Development team experience

27, 28, 31 * Witn similar applications X
23, 27 e With the computer hardware X
27 * With the language to be used X

15,. 26 F-2. Prograumier ability X

25, 27 F-3. Progranmer participation in require- X
ments definition

25, 26, 29 F-4. Amount of training required X

28, 29 F-5. Development team organization and size X

8, 25 F-6. Development team stability X

31 F-7. Development team morale X

29 F-3. Development team cooperation X

15 F-9. Development team objectives X

26 F-I. Appropriatentess of man-loading X

31 F-I. Availability of personnel when needed X

23, 2b F-12. Percentage of support personnel

G. pevelopment Hethodology

23, 24, 2o G-1. Pt grataming language used X

23, o G-Z. U~e of modern prograna4ifg practices

-73-

Table 9. Factors Affecting Development Cost/Productivity (continued)

Potential Effects of IV&V

References Factor Positive Negative None

27, 32 e Top-down development X
30 * Program design language X
23 1 HIPO diagrams X
15, 27 * Structured programming X
18, 23 * Programming support library X
23, 27 a Chief programmer team X
27, 33 e Design and code inspection X
33 a Unit development folders X

G-3. Compliance with well-defined X
standards

8 G-4. Quality assurance practices followed X

33, 34 G-5. Configuration nanagemient of the soft- X
ware and documentation

15, 33 G-6. (Quality of test plan X

23 G-7. Avoidance of hands-on batch testing X

31 G-8. Debugging style X

8, 25 G-9. Error reporting and correcting pro- X X
cedures

H. Developiment Facilities

23H-1. Availability of computer hardware

, 23 * Late selection of target computer X
15, 23 * Concurrent development of hardware X

and software

25 H-2. Suitability of target computer

23 * Sufficient speed X
15, 23 * Sufficient memory size X

23 H-3. Development and target computers X
differ

25, 21 1-4. Lase of access to computcr facilities

23 * Use ot operational site for dovel- X

23 e Use of another organization's X
developelent facilities

25 N Need to share computing lacilities X
8 * Proximity of cowputing facilities X

[2 -74-

Table 9. Factors Affecting Development Cost/Productivity (continued)

Potential Effects of IV&V
References Factor Positive Negative None

8 * Proximity of computing facilities X

H-5. Complexity of computer facilities

23 * Number of different development X
locations

25 e Number of different computers X

H-6. Computer response time

15, 28 * Mode of operation: batch vs. X
on-line

8 * Computer throughput rate X
25 * Time lost to maintenance X
25 s Probability of computer overload X

29, 31 H-7. Computer system reliability X

25, 29 H-8. Computer sytem usability X

H-9. Support software and development
tools:

23, 25 e *Availability when needed X
29, 31 * Quality Ix

29 H-10. Adequacy of technical reference K
materials

29 H-11. Suitability, comfort of work X
envi ronment

25, 29 H-12. Cooperation and responsiveness of X
support servi ces

27 H-13. Classified security environment X

25 H-14. Availability of ddta for the data X
base

I. Amount of Non-Productive kctivity Performed

15, 25 1.1. Travel X

1-2. Meetings, interfaces

24, 26 * Internal X
27 6 With customer X
25 * With other agencies X

-75-

Table 9. Factors Affecting Development Cost/Productivity (continued)

Potential Effects of IV
References Factor Positive Negative None

30 1-3. Documentation preparation X

8,22 1-4. Training X

24 1-5. Company business X

22, 24 1-6. Paperwork X

24, 25 1-7. Delays for needed materials, compon- X
ents, concurrence, etc.

30, 8, 6 1-8. False starts; need for development X

30, 35, 36 1-9. Software defect removal X

J. Prect anaement

8 J-1. Type of contract X

26, 29 J-2. Feasibility of schedule x

8, 26 J-3. Allocation of resources to each phase x

23, 26 J-4. Completion of activities within their x
allotted phase

23, 34 J-5. Effectiveness of cost monitoring x

24, 29, 31 J-6. Effectivenss of progress monitoring x

24, 29 J-7, Lffectiveness of personnel managenient x

8, 34 J-3. Adequacy of fortnal reviews and audits x

K. Costs Unireiltd to Productivty

K-1.* Coqputer hardware x

23, 25 K-2. Secondary resources (comp~uter tiae x
docutientation reproduction~, travel,
etc.)

25 K-3. Lquipment, off ice space, K

25 K-4. Simulation and test facilitiet

25 K-5. Special security-related equipwmnL x

-76-

unrelated to productivity." For these factors, the presence of an IV&V agency
either made no difference at all, or could make a difference only in unlikely
circumstances.

Of the remaining factors, IV&V was considered to have a potentially positive
effect on 27 and a potentially negative effect on 9. On one factor--error
reporting and correcting procedures--both a positive and negative effect
could be foreseen. The following paragraphs discuss these effects.

6.2.1 Positive Effects of IV&V

The study hypothesized a positive effect on 27 of the cost/productivity fac-
tors. These factors and IV&V's effects on them are discussed below. Related
topics have been discussed together for brevity.

6.2.1.1 Quality and Stability of Requirements: In Reference 8, Finfer
states that the stability and quality of requirement specifications may be
the key factor in programmer productivity. Supporting this position is Doty's
software estimation guide (Reference 23), which states that:

Vague operational requirements can be expected to decrease pro-
ductivity by 35% on command and control applications and 50%
on scientific applications.

a The effects of changing requirements can be as high as a 95%
decrease in programmer productivity.

Equally dramatic are figures cited by Wolverton (Reference 30), which indi-
cate that a requirement defect not corrected during the requirements defini-
tion phase is:

• 2-1/2 times more costly to correct during design
a 5 times more costly to correct during coding and checkout
* 36 times more costly to correct during test and integration

IImproving the quality of requirement specifications is one of the key objec-
tives of IV&V. Re4quirements verification focuses on the clarity, complete-
ness, correctness, and consistency of requirements. It can point out amis-
sions; identify unfeasible, questionable, and ambiguous requirements; detect
errors; point out inconsistencies; and identify problems in the way that the
requirements have been documented. The increased visibility provided by this
analysis can improve conmunication among the user, customer, and developer;
help the user to define his requirements more precisely so that later changes
will be unnecessary; and result in vastly improved requirement specifications.
By performing this verification in parallel with the requirements definition
process, IV&V can ensure that requirement changes are made early, preventing
the major cost impacts associated with later changes.

6.2.1.2 Qu aity and Stability of theDesign: According to Doty (Reference
23).

a 60% of all errors discovered in testing are caused by faulty
design.

-77-

* These errors can result in cost increases of up to 100%.

Emphasizing the importance of early detection, Wolverton (Reference 30) cites
figures stating that a design change costs, on the average, $977 to correct
during code and checkout and $7136 during test and integration (1975 figures).

The design verification performed as part of IV&V can have a major impact on
design quality and stability. It ensures that all requirements have been
properly translated into design and that all functions included in the design
are traceable to approved requirements. It evaluates the choize of algo-
rithis, the design logic, the data definitions, and all aspects of the design.
By performing this verification during the design phase, IV&V can detect
design errors before they are implemented in code and improve the quality of
the design materials used as input to the coding phase.

6.2.1.3 Quality and Stability of the Code: The coding process almost al-
ways involves some detailed design beyond that specified in the design mate-
rials. As a result, new faults can be introduced at this stage. Figures
cited by Finfer (Reference 8) indicate that coding errors not detected until
the testing stage can be from 2 to 5 times as costly to correct as those
detected during coding and checkout. Once again, early detection decreases
cost.

The code verification activity of IV&V is specifically designed to detect
anomalies in preliminary versions of code. It relies upon inspection rather
than program execution to ensure agreement between the design and code and to
check for faults in logic, data definition, dati usage, interfacing, and so
on. By detecting such problems before the program has been integrated for
testing, IV&V can decrease the cost of error correction.

This approach is substantiated by Shooman and Bolsky (Reference 6). In a
study of error detection methods, they found that a large percentage of faults
can be found by code inspection alone and that this method is cheaper by a
ratio of 25 to 1 than techniques involving machine testing.

6.2.1.4 Development Team Objectives: In Reference 37,* Weinberg reports
that the objectives of a software development team exert a significant influ-
ence on programmer productivity. In his experiments, development teams were
given the same program specification but were assigned different criteria for
success, namely, speed of program execution for one team, speed of program
development for the other. The results showed that the different objectives
produced markedly different results.

The application of this principle to IV&V les in the program office's abil-
ity to foster an attitude of cooperative competition between the developer
and the IV&V agency. If the developer knows that late deliveries, incom-
pleteness, inconsistency, and incorrectness are going to be reported by the
IV&V agency, he will tend to be more careful to meet deadlines and more
thorough and careful in his work, resulting in ultimate productivity gains.

*WeinDerg, G. M., "The Psychology of Improved Programming Performance," Data-
mnation, Nov. 1972.

-78-

6.2.1.5 Programming Language, Development Practices, and Configuration Man-
agement Procedures Used: The programming language and development and config-
uration management practices used on a project have been shown to have a sig-
nificant effect on programmer productivity. In Reference 23, Doty states that
development of a program in assembly language rather than in higher order
language can decrease programmer productivity by 75% and that use of modern
programming practices can result in a 67% increase in productivity for large
programs.

The inspection methods used by IV&V permit effective detection of development
standard violations. These may include questionable use of assembly lan-
guage, incorrect or ineffective use of modern programming practices, viola-
tions of accepted development practices, inadequate configuration control
procedures, and so on. The IV&V agency can alert the program office to these
problems so that adjustments can be made and the full productivity potential
of these methods can be achieved.

6.2.1.6 Error Correction Procedures, False Starts, and Defect Removal: In

Reference 30, Wolverton cites studies indicating that:

i One of the major factors affecting productivity is false starts.

a Two-thirds to four-fifths of programmer time is spent in elimi-
nating faults that were introduced earlier.

Supporting these studies are the findings of Miyamoto (Reference 36) which
indicate that on the average, 16.56 days were needed to correct each fault in

a software system under study.
IV&V can have a major impact on both false starts and defect removal tine.
False starts can be reduced by the improvement in requirements and design re-
sulting from IV&V. Defect removal can be decreased through a combination of
three factors:

Improved requirements and design iiean that fewer defects are
introduced into the code in the first place.

Unlike developient testing, which identifies the effects of a
program failure but not the program fult causing it, IV&V
identifies the specific problem in the code, thereby reducing
the "find-and-fix" cycle of defect remioval.

' Larly detection decreases the time and effort required to cor-
rect problems because faults are found before the modulps have
been integrated and tested.

6.2.1.7 Schedule C plance and Progress !onitoring: In Reference ?4,
Brooks states that schedule overruns result not from major calamities, but
from the cumulative effects of day-to-day slippage. To prevent such prob-
lems, it is crucial that all of the activities and iilestones planned for
each development phase be completed in that phase and tiot be allowed to ex-
tend into the next. Comtpletion of activities and milestones, however, can be

.79-

I L.L:.... , : -' .'., '::,V,_ :' -" " , .., , k ,i:,

difficult to assess. Timely deliveries of products that are inaccurate or
incomplete may provide the program office with a false picture of overall
project status. The schedule impacts of such deliveries may not surface un-
til late in the development process.

The IV&V agency's technical evaluation yields, s a side effect, a continual
assessment of the ove-all quality and status of the development project.
Late deliveries, inadequate materials, failure of promised access to develop-
ment facilities, and other signals can indicate to the IV&V agency that the
development may not be on schedule. The IV&V agency can then alert the pro-
gram office to the potential problem so that corrective measures can be taken.

6.2.1.8 Adequacy of Formal Reviews and Audits: Formal reviews and audits
are the decision points of the development process. They provide the program
office with the opportunity to review the developer's progress and to approve
or disapprove development products before the next development or life cycle
phase begins. IV&V can make a significant contribution to these reviews and
audits by providing the program office with an independent evaluation of the
materials being reviewed and of the review or audit itself. This evaluation
can help the program office to determine whether the development is proceed-
ing satisfactorily or changes need to be made. Informed decisions on these
issues can prevert costly schedule overruns.

6.2.2 Negative Effects of IV&V

Of the 125 cost/productivity factors identified in Table 9, IV&V has a poten-
tially negative effect on 9. The following paragraphs discuss these factors
and IV&V's effect on them.

6.2.2.1 Secondary Resource Expenditures: The developer is required to
supply the IV&V agency with copies of specifications, specification change
Pages, machine-readable source code, computer listings, trade study reports,
and so on. Generation of these deliverables requires computer time, use of
document reproduction facilities, paper, and other resources. These require-
ments impose overhead costs on the development effort.

6.2.2.2 Documentation Requirements: In order to perform requirements veri-
fication and design verification in parallel with the requirement and design
phases, the IV&V agency requires preliminary deliveries of requirement and
design materials. To provide these materials, the developer may be required
to deliver documents that would not otherwise be put into deliverable form.
These added documentation requirements, while having possible long-range pro-
ductivity benefits, take time away from the development effort.

6.2.2.3 Need To Share Computing Facilities: On some projects, the IV&V
agency conducts some or all of its testing on the same computer facilities
used by the developer. These facilities may be government furnished equipment
provided for the use of both contractors, a system test bed, the operational
site, or, in rare cases, the developer's own facilities. In some cases, the
sharing may involve support software, test software, and test equipment as
well.

-80-

The requirement to share these facilities with the IV&V agency can make com-
puter facilities less available for development testing, increase turn-around
time, and complicate the computer scheduling process. The scope of these
effects can be controlled, but they can decrease development productivity.

6.2.2.4 Classified Security Environment: Providing the IV&V agency with
development materials and sharing computer facilities with IV&V analysts be-
come more complex when the program being evaluated is classified. Transfer
of materials from one agency to the other involves fotwal security procedures
involving not only the development and IV&V teams but security personnel as
well. Computer scheduling must take into account not only the amount of time
needed by each agency, but the types of jobs that can be executed concur-
rently. A classified security environment always affects programmer produc-
tivity to some t-xtent; the presence of the IV&V agency adds one further
complication.

6.2.2.5 Error Reporting and Correcting Procedures: "Error reporting and
correcting procedures" was the one cost /roductivity factor considered to be
affected both positively and negatively by IV&V. The positive aspects were
addressed in Section 6.2.1.6. On the negative side is the time required for
anomaly report processing. Each report must be studied and understood. A
decision must be made as to its validity and as to the cost effectiveness of
various alternatives for action. These recommendations must then be conveyed
to the program office, a process that may involve discussions including the
IV&V agency.

If the anomaly report concerns a problem that would have surfaced during pro-
gram development or operation, development time is saved by having it pointed
out in an anomaly report. If the report is incorrect or out of the scope of
the development project, anomaly report processing time clearly outweighs any
benefits gained. If the report concerns a maintainability problem that would
not arise in the development process, i-s processing would tend to decrease
development productivity but have a positive effect on life cycle cost. The
balance between positive and negative effects, therefore, is complex. Section
6.3.7 examines this question quantitatively, using results from the IV&V
projects.

6.2.2.6 Customer Interface. Walston and Felix (Reference 27) identify
"customer interface complexity" as a factor in programmer productivity. They
report a 42% decrease in productivity when this interfa.e is more complex
than normal. Though not explained in the reference, it is assumed that this
complexity is determined by such factors as the degree of customer involve-
ment in the development process and the amount of time spent in interfacing
with the customer.

IV&V can increase the complexity of the customer interface by giving the
customer more visibility into the development process. The developer may
be required to report on the status of anomaly reports, present arguments
regarding the validity of anomaly reports, respond to the customer regard-
ing IV&V requests for deliverables, respond to the customer regarding IV&V
colflients about the development process, arrange for time on shared computer
facilities, etc, !n the long run, a better informed customer enhances

-81-

productivity; in the short run, however, these added demands take time from
the development process.

6.2.2.7 Interfaces With Other Agencies: Nanus and Farr (Reference 25) state
that the number of agencies with which the developer must deal and their level
of experience with system development have an impact on programmer productiv-
ity. The need to interface with the IV&V agency falls within this category.

The interface with the JV&V agency may include discussions of anomaly report
validity; discussions of anomaly resolution; technical interchanges about
deliverables, equipment, and other aspects of the development or IV&V efforts;
and so on. While such interfaces are generally kept to a minimum to ensure
the independence in outlook of the IV&V agency, they do require time of devel-
opment team members.

6.2.2.8 Paperwork: Frederick Brooks (Reference 24) reports that 50% of a
programmer's time may be devoted to activities other than programming. Ma-
chine down-time, unrelated assignments, meetings, sickness, personal time,
training, paperwork, and so on account for the rest. IV&V's effects on meet-
ing time were discussed in the last two paragraphs. IV&V may also increase
the paperwork required from the developer. The increased paperwork may in-
clude written responses to anomaly reports, reports and logs concerning anom-
aly resolution, and other records required by the program office. All of
these demands take time away from development tasks.

6.2.2.9 Support Personnel Required: In Reference 23, Doty reports that
each 10% increase in support personnel relative to programmers and analysts
results in a 25% decrease in productivity. This figure is based on an ex-
pected mix of 20% support personnel to 80% programmers/analysts. If require-
ments for deliverables, computer operators, and other services imposed by the
presence of an IV&V contractor require the addition of support personnel, this
factor would come into play in reducing productivity.

6.3 Project Results

Not all of the hypotheses set forth in Section 6.2 could be evaluated from the
data collected. The data that were available, however, together with results
from the literature, provided answers to the following questions:

0 How did IV&V cost compare with development cost on the projects

surveyed?

* To what extent did IV&V contribute to:

- The quality and stability of requirements?
- The quality and stability of the design?
- The quality and stability of the code?
- Compliance with development standards and configuraticn

management procedures?

0 What was the cost benefit of early error detection?

-82-

* What were the positive and negative effects of anomaly report

processing on programmer productivity?

The following paragraphs discuss these results.

- 6.3.1 Comparison of IV&V Cost to Development Cost

Figure 22 compares IV&V cost with software development cost and with total
acquisition cost. Discounting Project 5, for which cost figures were not
available, IV&V project costs averaged 25% of development costs and 20% of
total acquisition costs. These would appear to be good rules of thumb for
IV&V cost estimation.

6.3.2 The Effect of IV&V on Requirement Quality and Stability

Of the IV&V projects surveyed, only one--Project 3--performed a standard
requirements verification. Projects 1, 2, and 5 reported a number of re-
quirement anomalies (118 for Project 2), but the phase in which they were
reported was past the time at which significant cost/productivity benefits
would be realized. Project 4 reported most of its findings in the weekly
walk-throughs performed for the development project, making the effects of
its requirements verification unavailable for the study.

Project 3 reported 96 requirement anomalies in the pre-code phases of the
project, that is, early enough to make a difference in the quality and sta-
bility of the requirements. Sixty-seven more requirement problems were re-
ported after code release.

The breakdown of the 96 requirement anomalies was as follows:

o Incorrect requirements: 38
* Inconsistent requirements: 14
* Incomplete requirements: 28 "--

* Other content problems: 13
s Presentation, standards problems: .3

TI.e effect of these anomaly reports was to clarify the program requirements,
improve the quality of the requirement specifications used as input to the
design process, prevent false starts resulting from inadequate understanding
of the problem to be solved, and decrease the number and magnitude of re-
quirement changes needed during subsequent development phases.

6.3.3 The Effect of IV&V on Design Quality and Stability

Of the IV&V projects surveyed, only Project 5 conducted a standard design ver-
ification. This analysis resulted in 75 anomaly reports, falling into the
following categories:

a Requirement compliance: 1
, Choice of algorithm, matheinatic : 12
* Sequence of operations: 9
i Data definition: 22

-83-
, IN XI
• mui i mlA

50

40-

w25% 8%2%25%

~20-
0 13%

4.)

U

Project 1 Project 2 Project 3 Project 4 Projects 1-4

Figure 22a. IV&V Cost as a Percentage of Development Cost

4.)0 50-
0

*- 40-

cr30-
U

22% 22%
4(0 20% -20%
0

4-

010-

Fiue Project 1 Project 2 Project 3 Project 4 Projects 1-4

Fiue22b. IM& Cost as a Percentage of Total Acquisition Cost

-84-

* Data handling: 23
* Interfaces, I/0: 8

The effect of these anomaly reports was to improve the quality of the design
materials used for coding, allow design problems to be corrected before they
were propagated into the code, decrease the number and magnitude of design
changes needed once coding was under way, and decrease the time spent in false
starts and defect removal during the coding and testing phases.

6.3.4 The Effect of IV&V on Code Quality and Stability

The 5 IV&V projects reported 329 code anomalies before program testing was
under way, that is, early enough to have significant cost/productivity bene-
fits. The number of such anomalies on each project was as follows:

e Project 1: 40
a Project 2: 66
* Project 3: 58
* Project 4: 83
a Project 5: 82

These anomalies fell into the following categories:

Project
Category 1 2 3 4 5 All

Requirement/design compliance 1 - 17 6 1 25

Choice of algorithm/mathematics 17 25 5 17 15 79

Sequence of operations 3 3 10 3 14 33

Data definition 3 10 1 17 5 36

Data handling 9 17 9 22 21 78

Timing, interruptibility - 1 - - - 1

Interfaces, I/O 2 5 5 10 4 26

Other content problems 3 1 9 2 13 28

Presentation, standards compliance 2 4 2 6 9 23

The effect of these anomaly reports was to improve the quality of the prugram
submitted for testing, allow for correction of coding problems before inte-
gration of modules made this process more difficult, decrease the number and
size of proyramnh nges needed during testing, and decrease the time devoted
to defect remov'al during the testing phase.

BE i| i-85-

6.3.5 The Effect of IV&V on Standards Compliance

A total of 55 anomaly reports on the 5 projects concerned compliance with de-
velopment standards and configuration management (CM) procedures. The break-
down of these reports by project was as follows:

Anomalies Concerning
Project Standards CM

1 2
2 8
3 31 3
4 1
5, 9 1

The standards-compliance anomaly reports were concerned with violations of
specified standards and violations of well-accepted programming practices.
These anomaly reports alerted both the developer and the program office to
potential problems in the production of code and documentation that could
have resulted in development and maintenance problems. The configuration
management anomaly reports concerned incorrect version identification of spec-
ification chaiAge pages. These reports helped to prevent the dissemination of
different document versions bearing the same configuration control markings.

6.3.6 The Cost Benefits of Early Detection

A major objective of the IV&V study was to quantify the effects of IV&V on
development cost/productivity. By applying cost/productivity figures found
in the literature to IV&V results of the five projects surveyed, it was pos-
sible to obtain an estimate of the cost benefits associated with early detec-
tion of anomalies.

A basic question that had to be addressed betore any analysis could take
place was which anomaly reports to consider. Possibilities were:

s All of 'hem
o Only those that were accepted and corrected
m Only those that affected reliability

Consideration of this question led to the following conclusions:

An anomaly report has a cost/productivity benefit on the devel-
opment effort if it reports a problem that would have surfaced
later in the dalopment or in operation and required correc-
tion at that time.

* The problems that wolild have surfaced later in the development
effort or in operation and required correction at that time were
those affecting program reliability.

-86-

*-Reports concerning maintainability anomalies result in life
cycle cost savings but not necessarily in development cost sav-
ings, the subject of the analysis.

9 Invalid reports or those that were not acted on would not have
a cost/productivity benefit.

2 To make the analysis meaningful, therefore, it was limited to those anomaly
reports that were concerned with program reliability, accepted as valid by
the program office, and acted on by the developer.

Two analyses were performed. The approach taken for the first was as fol-
lows:

* Select the anomalies meeting the criteria outlined above.

e * Separate the selected anomalies according to the development
phases in which they were detected.

e Apply the error-correction cost figures reported by Wolverton
in Reference 30:

- Correction during requirements definition: $195
- Correction during design: $489
- Correction during coding and checkout: $977
- Correction during test and integration: $7136

a Assume that all of the anomalies would have been detected dur-
ing development testing if IV&V had not been performed.

* Calculate the cost savings realized by detecting anomalies be-
fore the testing phase.

Table 10 shows the results of this analysis. In keeping with the assumption
that all anomalies would have been detected during development testing, the
anomalies detected during the testing phase are shown to have no cost bene-
fit. Those detected earlier are shown to have cost benefits increasing with
their distance from the testing phase. Total savings are shown in the right-
most col umn.

The most striking finding is that even assuming that all anomalies would have
ueen detected by the developer, substantial cost benefits can be demonstrated
based on early detection alone. Even with 270 anomalies assumed to have no
cost benefit at all, the figures show an average savings of $601,613 per pro-
ject. For Project 4, the savings exceed the cost of the IV&V project, despite
the fact that most requirement and design anomalies were not documented in
anomaly reports, so are not shown in the analysis. Project 3 savings come
close to its cost. The lessons shown by the table are clear:

e The earlier anomalies are detected, the greater the cost
benefits.

-87-

CO ' o

'0 CL
-o 'LV0

-n tA -ft

x0~N '~CI ,. 0 N - 10

00 ' 0' N N.

~ 0 0A0'

en m

w t4 tt. 4 ^
'A - ~ N - '' 0

em ~ ~) . o *
0 (+j -. Nj. -0 .

4J4

t S*

I'A

IAI
C7 'n

o IV&V can pay for itself through early detection of errors.

The second analysis was identical to the first except that instead of assum-
ing that all anomalies would have been detected during development testing,
a scenario was adopted in which 10% of the anomalies went undetected into the
operational environment and were found there. Figures published by Finfer
(Reference 8) indicate that the cost to correct such problems is 15 times the
cost if detected during coding and checkout. Combining this finding with
Wolverton's cost figures produces an average of $14,655 to correct an error
once the program becomes operational.

Table 11 shows the results of this analysis. The average savings are $714,097
per project, up from $601,613 in the first analysis. Savings shown for Pro-
jects 3 and 4 exceed the cost of the IV&V efforts. Not shown is the fact that
if even one of the errors not detected until operational use had a mission-
threatening impact, the cost benefit of IV&V detection would be much higher.
If one of these errors had a life-threatening impact, the benefit would be
i ncal cul able.

6.3.7 Cost/Productivity Fffects of Anomaly Report Processing

The time required to analyze and respond to anomaly reports is the most con-
spicuous imposition of IV&V on development productivity. The question that
arises is whether there are sufficient productivity gains associated with
each report to offset the time that must be spent.

To answer this question, the anomaly reports for which resolution was known
were divided into four groups:

* Reports that were concerned with reliability, declared valid,
and acted on

a Reports that were declared invalid: or that were withdrawn by
the IV&V agency

* Reports that were decldred valid and were acted on, but did not
concern reliability

a Valid anomaly reports that were not acted on

The following paragraphs explore the cost/productivity impacts of each type
of report.

6.3.7.1 Effects of Corrected Reliability Anomaly Reports: The first group
of anomaly reports were those Rat were concerned with program reliability,
judged valid by the program office, and acted on by the developer. These
reports concerned anomalies that would have shown up either during program
testing or during operational use, that is, anomalies that the progratmmiter

* would have had to dal with eventually. The analysis assumed that all uf the
anoimalies would have been detected during program testing rather than the more
troublesome and expensive case of their showing up in operational use.

.89-

1100 CC, W N IS 4

OZ U, a

c0 I PI

iI

.L,-- NJ

, XI QI ,, 4-

4J4

-&-) IA .

A 'A

"4g' 90 -

oo

..-- .4 -

.- -- "sU 0 %4 04 .

- 'C
.. I

44-... II 4 Nj C- 4.

€.4

In a paper on error remediation expenditures (Reference 35), Herndon and
Keenan present the following equation:

Error remediation cost equals the sum of the costs of:

e Error handling:

- Trouble report generation
- Management analysis
- Resolution form generation
- Configuration control board actions

s Error analysis
* Error correction
* Retesting

They give as averages the following figures for the hours required for each of
these activities:

Trouble report generation .17 hours
Management analysis .17 hours
Resolution form generation .25 hours
Configuration control board action .67 hoursB, Error analysis 0-12.0 say 6) hours
Error correction 0-24.0 say 12) hours
Retesting 1.94 hours

Total 21.2 hours

Other authors present considerably higher estimates. Miyamoto, for example,
reports that the average "find-and-fix" cycle for program faults in a large
system was 16.56 days (ReFerence 36). Multiplying this figure by a conserva-
tive 6 hours per day results in 99.36 hours, nearly 4.7 times the figure given
by Herndon and Keenan.

The figures reported in the literature appear to depend upon the size and
complexity of the software being developed. For the analysis of IV&V results,
it was decided to use both sets of figures quoted above in order to represent
the range of values reported in the literature. Incorporating Miyamoto s

.1 result into the Herndon-Keenan model produces the following estimate for error
renediation:

Trouble report generation .17 to .8 hours
Management analysis .17 to .8 hours
Resolution form generation .25 to 1.18 hours
Configuration control board action .67 to 3.15 hours
Error analysis 6.0 to 28.2 hours
Error correction 12.0 to 56.4 hours
Retesting 1.94 to 9.12 hours

Total 21.40 to 99.16 hours

-91-

Shooman arid Bolsky (Reference 6) add that the typical amount of computer time
used to didynose a problem is 0-4 runs, using 0-30 minutes. They cite as a
mean .61 runs and 13.5 minutes (.225 hours) of computer time.

When a program fault is detected by IV&V rather than by the developer in pro-
gram testing, the impect on remediatio-n expenditure is as follows:

0 Trouble Report "eneration: No trouble report has to be gen-
erated by the development test team, resulting in a savings of
.17 to .8 hours per anomaly.

6 Error Analysis: The time needed for error analysis is signifi-
cantly reduced because, unlike a trouble report, which generally
describes only the symptoms of a fault as they were observed
during testing, an anomaly report identifies the specific error
made and often recommends corrective action. A conservative
estimate would be that error analysis time is cut in half when
starting with an anomaly report rather than a trouble report--
a savings of 3.0 to 14.1 hours per anomaly.

* CPU Diagnostic Time: Ihe computer time needed for diagnostic
runs is also reduced because of the specific information pro-
vided in the anomaly report. Assuming a reduction by half re-
sults in a savings of .1125 computer hours per anomaly.

* Paperwork: Paperwork, in the form of anomaly response forms,
special resolution forms, and so on, may or may not be greater
than that required in response to trouble reports. Assuming
that the time required for paperwork is increased by half
results in an extra .125 to .59 hours per anomaly.

$ Management Analysis: The time required to evaluate tradeoffs
in correcting the problem may be greater in responding to anom-
aly reports than trouble reports because of IV&V and customer
concurrence requirements. Assuming that the time is increased
by half results in an extra .085 to .4 hours per anomaly.

* Other Factors: All other factors in the Herndon-Keenan model
would be the same whether processing an anomaly report or a
developer-generated trouble report.

Table 12 shows the results of this analysis. The cost figures discussed above
have been multiplied by the number of anomaly reports on each project so that
the total hours saved and the extra hours expended can be seen.

Despite the consistent use of conservative assumptions, the figures indicate
that the processing ef anomaly reports documenting problems that would have
had to be corrected eventually actually saves programmer time. The estimated
savings for each anomaly is 2.96 to 13.9 hours, plus 6.75 minutes of computer
time. For Project 4, which had the smallest number of anomalies in this
category, estimated savings in programmer time ranged from 267 to 1,252 hours.
For Project 2, with the greatest number of anomalies, estimated savings ranged

-92-

N -

to ZX 0f t*

infn

" ~Mf . . '.. g,

0.,N, * ' .~
t*Z

S Z .I -. 5 1

,!'

if: ;-93-

ti --.,C'.

from 640 to 3,006 programmer hours. It should be noted that these findings do
not take into account the additional cost advantages of early detection. They
assume, in effect, that all anomaly reports were submitted in the testing
phase.

6.3.7.2 Effects of Invalid Anomaly Reports: One way in which IV&V can waste
prograniner time is by submitting invalid anomaly reports. Reports may be
invalid because-

9 They identify faults where none exist.

* They recommend changes that are beyond the scope of the devel-
opment effort.

a They recommend changes that are not necessary for satisfactory
program performance.

The number and percentage of anomaly reports declared invalid on the five
projects was as follows.

Project 1: 9 (4%)
Project 2: 40 (12%)
Project 3: 25 (5%
Project 4: 3 (2%)
Project 5: 18

Total 95 (6%)

An average of 6% of the anomalies reported were declared invalid. Project 2,
with 12%, had the highest number. When questioned about this figure, project
participants explained that there was disagreement between the developer and
the IV&V team as to the degree of accuracy that could and should be achieved
in program calcviations, and the disagreement resulted in quite a few IV&V
recomendations being declared invalid.

To quantify the effects of processing invalid anomaly reports, the following
assumptions were made:

• The human and computer time spent in analyting and rejecting a"
invalid report may be as great as the time spent in processing
a valid one.

* The time spent for paperwork and ,managament analysis may also
be as yeeat for an invalid report as for a valid one.

l The other costs associ 'o1 with error remediation do not cixvu
into play in processing invalid reports.

These assumptions yield the following estimates for tim expended on each in-
valid anomaly teport:

-94-

e Error analysis: 3.0 to 14.1 hours
K, Computer time: 6.75 minutes

e Paperwork: .375 to 1.77 hours
* Management analysis: .225 to 1.2 hours
e Total programmer time: 3.63 to 17.07 hours

Table 13 shows the results of these assumptions. The amount of time spent
processing each invalid anomaly report was estimated to be from 3.6 hours to
17 hours. Thus on Project 2, with 40 such anomaly reports, the amount of time
was 145 to 683 hours, costing $5,800 to $27,320. On Project 4, with only 3
such reports, the amount of time was 11 to 51 hours, costing $440 to $2,040.

Minimizing these figures should be a goal of all IV&V projects. The program
office can support this effort by making both the developer and the IV&V con-
tractor aware of the scope and nature of anomaly reports that will be consid-
ered valid.

6.3.7.3 Effects of Corrected Non-Reliability Anomalies: Anomalies that have
been corrected but do not concern reliability are primarily maintainability
anomalies. These anomalies are concerned with extraneous code, violations of
development standards, incorrect documentation, and so on, These problems
would not arise in program testing and therefore do not fit into the error
remediation analysis presented above.

The nunbei" and percentage of such anomalies was as follows.

Project 1: 13 (5%)
Project 2: 18 6%)
Project 3: 252 49%
Project 4: 64 37%)
Project 5: 31 -.10%.

All 378 (24%)

Nearly half of the anomalies on Project 3 and over a third of those on Project
4 fell into this category. Percentages for the other projects were 10% or
less.

From the point of view of the developer, these anomaly reports may be consid-
ered pure overhead--they must be dealt with even though they do not help to
remtove operational problems that could impair developer testing. The cost
benefits of these anomalies come into play only when the entire life cycle of
the software is considered. Correcting them decreases the productivity of the
development team, but increases the productivity of the maintenance team. No,
quantitative data on this tradeoff could be found.

6.3.7.4 Effects of Valid Reports That Were Not Acted On: Anomalies in the
fourth category were those for which the program office decided that it Was
(lot cost-effective to make a correction even though the problem was real. The
number and percentage of such annmalies was as follows:

-95-
N.

aju, C=) 0l C-

4.. C). K ! 1 C)_
4J LC r-I c'. C 0 m' 0

- , I I I I

- 0 C 0 0) o 0D
0j~ ('.1 LID co13

PG.) m' .'i .

4-) qt C'5 r. .-4 00 Nl
Ln 00 Co Lo)0 C'!j

00

C '-4 k.0 Ln 4.3

> CL - 4J+.

oj 0-
4-1n0>NS.)

L.~ (0 c 0c'
ESo 1

060

VI)

0! 4j Nl S.

-96-li

P 1 8

'Project 1" 19 (8%)

Project 2: 19 (6%)
Project 3: 12 (2%)
Project 4: 12 (%)
Project 5: 88 (28%)
Al: 150 (10%)

Project 5, because of the experimental nature of the development, had an un-
usually high number of this type. The other projects show more typical
results, averaging approximately 6%.

The cost impact of these anomaly reports could not be determined. On the
negative side, they required processing time without producing any reliability
or maintainability gains. On the positive side, they reported real problems

p. that may have been encountered in testing, and therefore may have saved the
time that would have been devoted to those problems. No way was found to
quantify these effects.

6.3.7.5 Summary of Anomaly Report Processing Effects: Table 14 summarizes
the contents of Sections 6.3.7.1-4. The primary conclusions of the analysis
were as follows:

e The saving of programmer time on the valid, fixed, reliability
anomalies far outweighs the time expended on invalid anomaly
reports.

* The time spent fixing non-reliability anomalies results in long-
range savings in the .form of more maintainable software.

Valid, unfixed anomalies have the mixed effect of requiring
handling time but pointing out problems that the developer or
maintainer may have to be aware of.

-97-

Table 14. Summary of Anomaly Report Processing Effects

Anomaly Report Type Number Cost/Productivity Impact

Project 1:

Valid, fixed, reliability 188 Savings of 556-2,615 hours; 21.2 computer hours
invalid 10 Expenditure of 32-154 hours; 1.0 computer hours
Valid, fixed, non-reliability 13 Development time expended; maintenance time saved
Valid, not fixed 21 Indeterminate effect

Vdhld, fixed, reliabi ty 216 Savings of 640-3,006 hours; 24.3 computer he.rs
Invalid 40 Expenditure of 145-683 hours; 4.5 computer hours
Valid, fixed, non-reliability 19 Development time expended; maintenance time saved
Valid, not fixed 19 Indeteminate effect

Project 4:

Valid, fixed, reliability 138 Savings of 408-1,920 hours; 15.5 computer hours
Invalid 25 Expenditure of 90-427 hours; 2.8 cwaputer hours
Valid, fixed, non-reliability 303 Development time expended; maintenance timfle SdVed
Valid, not fixed 19 Indeterminate effect

Prje4.

Valid, fixd, reliability 90 Savints of 2b)-1,252 houri; 10.1 conputer hou11s::Invalid 3 Uxpendittire of ll-bl hours; 0J.3 wonputer hours,
(. Vl, t ix~d, nion-telidli |t~y 66 Development time expended; nwintenonce time savedValtd, tu fixed 1z IndeteininatE effect

Valid, fiAed, relabity 115 Savings of 341-1,600 hours; 12,9 computer hous
Inva Id 18 Cxpenditure of 66-300 hatkr, .0 Computor hOtjr5
Valid, fixed, non-eliability 31 Uevelopmnt tire expetided; inaLntenan tink) %.Avo
Valid, not fixed Indotei pin1te effect

Vol id , f ixed , re liad itity 147 4av i ft f 1 -, 0 ,39 1 hour ; A .0 110, ' C,
Inyill WI % tUenditkiee of 3041.ti 1 0~ . ~~~

V411d, not ft. ej 10 |flideref'O e fct

-98

7. CONCLUSIONS AND RECOMMENDATIONS

The IV&V study analyzed the results of five IV&V projects to determine the
effects of IV&V on software reliability, maintainability, and development
cost/productivity. The following paragraphs present the study's conclusions
and recommendations.

7.1 Study Conclusions

Conclusions resulting from the study were as follows:

* IV&V results depend significantly upon project objectives and
directives--IV&V finds the types of problems it is directed to
find.

* The primary emphasis of IV&V is on software reliability; soft-
ware maintainability is deemphasized on many projects.

* While IV&V's effect on reliability cannot be quantified, the
impact appears significant.

Each project detected an average of 150 anomalies that would
have affected program reliability and that were deemed im-
portant enough for correction. This is equivalent to 2.2
such anomalies per thousand machine language instructions.

Thirteen percent o~f these anomalies were of Hig,' severity,
indicating possible threat to life or property; another
35% were of Medium severity, indicating serious threat to
mission objectives.

None. of the programs that underwent IV&V have experienced
operational problems that required modification.

s IV&V is being underutilized as a tool for improving software
maintainability.

- Software maintenance costs are approaching 75% of software
life cycle cost.

- This cost can be reduced by designing software with specific
maintainabil ity characteristics.

mI V&V is ideally suited for evaluating these characteristics.

Y'V&Vs current charter regarding maintainability is usually
limited to evaluating program documentation and identifying
latent errors; this role is often deemphasized.

On one project where maintainability was emphasized, IV&V
detected 330 anomalies whose correction improved software
maintainability.

//-A

* IV&V is cost-effective, especially if applied early.

IV&V costs average 25% of development cost and 20% of total
software acquisition cost.

Of 125 factors known to influence programmer productivity,
IV&V has no effect at all on 90, indicating the limited
overhead that IV&V places on the development process.

Of the remaining 35 factors, IV&V has a positive effect on
27, a negative effect on 9 (on one factor, both a positive
and negative effect could be seen).

IV&V increases programmer productivity by saving the time
that would have been devoted to false starts and defect re-
moval.

- IV&V can pay for itself through the cost benefits provided
by early detection of anomalies.

7.2 Reconvendations for IV&V Planning and Management

Study results led to the following recouniendations for increasing IV&V effec-
tiveness on future projects:

s Concerning reliability:

- Encourage independence of IV&V outlook and techniques by
controlling the degree and type of contact between the de-
veloper and the IV&V agency.

- Plan the IV&V project to allow for early detection of prob-
lems so that there is time fur adequate redesign.

- Ensure that corrections to anomalies are reverified by the

IV&V agency.

* Concerning maintainabi Ity:

Direct trie IV&V agency to evaluate the software for main-
tainability as well aS for reliability.

Draw up a checklist of specific maintainability criteria
such as those in Appendix C.

Schedule the development and IV&V efforts so that there is
time after the conclusion of testing for the IV&V agency
to evaluate final program documentation.

Treat tmaintlnabillity anomalies as seriously as reliability
anomalies; perhaps establish separate criteria for High,
Medium, and Low severity ratings for these antonialies.

-100-

xm

* Concerning cost/productivity:

- Stress early detection of anomalies.

- Include in the IV&V process requirements verification and
design verification performed in parallel with the require-
ment and design development phases.

- Ensure delivery of preliminary requirement materials, design
materials, and code so that IV&V can proceed in parallel
with the development and provide feedback into each phase.

- Clarify IV&V scope to minimize the number of anomaly reports
declared invalid.

Minimize the overhead associated with anomaly report han-
dling while still maintaining high visibility into anomaly
report resolution.

7.3 Recommendations for Future Study

A number of interesting questions arose during the study that could not be
answered with the data available. The following paragraphs identify these
questions and provide some insight into the issues involved in answering them.

7.3.1 IV&V Productivity

Considerable attention has been devoted to measuring and improving programmer
productivity. To our knowledge, however, no attempt has been made to measure
IV&V productivity, or even to define it.

Progratner productivity is measured in terms of amount of output per unit of
time, for example, source lines delivered per month. Attempts to transfer
this measurement scheme to IV&V run into problems. The primary output of an

• IV&V team is anomaly reports. Can an analyst be required to find so many
anomalies per week? Is the analyst who detects five anomalies in one week
more productive than the analyst who detects only three, or in fact, the
analyst who detects none? Are 10 Low-severity anomalies equivalent to I High?
If 20 anomalies are detected in March and 10 in'April, has IV&V productivity
decreased 50%?

The answer is both "yes" and "no." Finding anomalies is what IV&V is about,
- but so is ensuring their absence. Thorough analysis of an error-free subrou-

tine produces no anomaly reports, but cannot be considered a nonproductive
-, activity. Its output, in effect, is a "stamp of approval" for the subroutine,

no less valid a product of IV&V than anomaly reports.

If "anomaly reports per unit of time" is not a good measure of IV&V productiv-
ity, what is? It would seem to make more sense to measure IV&V productivity
in terins of input processed than output produced: lines of Code analyzed per

.i week, pages of documentation evaluated per month, test procedures carried out
per week, and so on.

"-,0.-

Vi

IV&V productivity measured in this way could be expected to be influenced by
many of the same factors that affect programmer productivity. Program size,
complexity, application, and so on affect the difficulty of both developing a
program and evaluating it. The same is true for specification quality, pro-
gramming practices used, personnel experience, and many of the other factors
identified in Table 9. One factor not experienced by the development team is
the IV&V project's dependence upon the development schedule. When the de-
velopment schedule slips and required products do not become available, the
IV&V schedule necessarily slips as well. The degree of cooperation provided
by the developer can also affect IV&V productivity.

Interesting questions concerning IV&V productivity, then, are:

* How should it be defined?

How do factors that affect programmer productivity affect IV&V
productivity?

* What other factors affect it?

* How do different tools, techniques, and procedures affect it?

* How do different development practices affect it?

a What are reasonable productivity rates to expect on a project?

* How can IV&V productivity be improved?

7.3.2 Effects of Modern Prograutning Practices

Modern programming practices have been incorporated only recently into the
types of software verified by IV&V. As a result, the IV&V study was able to
include only one such project, a sample clearly too small to permit conclu-
sions to be drawn about the effects of modern prograniming practices on IV&V.
Questions of interest are:

* What types of anomalies are found on projects using modern pro-
graniming practices?

How do they compare with the results of other projects?

s Are different IV&V techniques required for those projects?

* Can 'IV&V help to evaluate the effectiveness of various program-
ming practices?

7.3.3 Effects of Program Characteristics on IV&V Results

The IVV study had limited information about each program evaluated. Of con-
siderable interest would be a study that related each anomaly to:

-l402-

P7

* The software function or module in which it was found

* The specific characteristics of that module, such as size, corn-
plexity, number of interfaces, etc.

* The development and testing methods used on the development
project

* The development standards used on the project

e. Other program characteristics

7.3.4 Effects of Various IV&V Tools and Techniques

Software tools can be a powerful aid to IV&V analysis and testing. They can
detect the presence of certain types of problems, ensure the absence of
others, and aid in the analysis and testing activities. An interesting sub-
ject for study would be the detection method used for each anomaly reported.
Of particular interest would be:

* The relative effectiveness of manual versus automated analysis

* The relative effectiveness of specific tools and techniques

* The types of problems detected by each tool and technique

* The types of tools and techniques still needed by IV&V

7.4 Recnmmendations for Data Collection

IV&V and development projects generate enormous amounts of data, not all of
which can be saved. The following recommendations are for IV&V recordkeeping
procedures that would aid in future studies of this kind.

* Maintain a central anomaly report log for each program eval-

uated; record for each anomaly:

- Anomaly report number

- Anomaly report date and analyst

- Anomaly location, including document version, program
version, routine name, if applicable

- Anomaly description

Anomaly category

- Special circumstances surrounding the anomaly

- Anomaly effects

-103-

- Anomaly severity

Development phase when detected

- IV&V phase when detected

- Method or tool used for detection

Anomaly acceptance or rejection, and date

Anomaly resolution and date of resolution

- Materials changed and nature of chanqes

- Acceptibility of resolution to the IV&V contractor

e Include a copy of each anomaly report in the loy file.

a In a central log for each program, record for each routine:

- Language used

- Size

- Function

- Number of interfaces

- I/0 characteristics

e In a project management log, record:

- Monthly man-loading for each IV&V activity

- Identification of materials evaluated

- Personnel assignments in tevimo of pages of documentation or
lines of code to be evaluated, test procedures to be per-
fonmed, etc.

- Time required to complete each assignment

- Nmber of anomalies resulting from each assignment

- Projec* costs

- Accurate schedules showing developmient deliverables, IV&V
activities, IV&V deliverables

- Statement of objectives

-- Criteria for assigning severity ratings

-104-

r } - List of tools used

- List of project participants

Information that could be recorded by the developer to aid in the analysis of
IV&V effects would include:

* Accurate schedules

* Activities that must be performed to support IV&V

. Man-hours spent performing these activities
c..

* Cost of paper, tapes, CPU time, etc., for deliverables to the
IV&V contractor

- Development techniques used

. Programmer productivity figures

" Test results

This information about the IV&V and development efforts would be an invaluable
contribution to, future studies of this type.

::"-...-

APPENDIX A

PROJECT SELECTION

The project selection activity consisted of:

* Establishing selection criteria

* Identifying candidate projects

e Selecting the projects to be used

t The following paragraphs describe these activities.

Al. SELECTION CRITERIA

The selection criteria used in the study came from two different sources.
Basic criteria were set forth in the study's Statement of Work (SOW). These
criteria stated that there were to be at least five IV&V projects, that each
was to involve an unclassified Department of Defense (DoD) program, preferably
a conmand, control, comunication, and intelligence (C31) application, and
that each was to involve a program having at least 100,000 lines of source
code.

To these basic requirements were added additional criteria aioed at ensuring:

* A balance of higher order language (HOL) and assembly language
programs

A A balance of real-time and nonreal-time programs

e A balance of modern software engineering and traditional devel-
opment practices

* A balance of initial development and modification efforts

* IV&V projects performed in parallel with, rather than subsequent
to, the development effort I

* Complete, rather than on-going, 1V&V projects

M lV&Y projects that had kept good records

Table A-I sumnarizes the two sets of selection criteria*

AZ CANDOATE PROJECTS

Thirty-five projects were considered as candidates for the studv. Table A-2
summarizes their characteristics.

-407" -m

(AU U L 0

0)~~Q (UCCC ~~

(0 (0 (a C 0 C

)0 .) Al m co COc

4-0

4-) 1-

0) 3.49- 4-

.9-
r_ %m0)*0 0

V) 4@ C) C -0 .- 5

4..) 06) 06. '. .0~
Ul V 0) 0 0C s

A) (0ca

cu 0-. . z
o >1~OJ

r_. 41 (A r 0 cm0).
0.. fa -W4 (0 0r_.

4J C 0)
0 u NAl41 4

4-3 C 0 - (

C0 (A- 4-

t) 4.) 641 r

to 0 0

4- 4t) m~ (MM .C 0)

c c(0~ so ad

0) 0) 1-) 0)- c.. zw 4.)

.#- (Ua 0- 0. 6-1

008

n.

LA L L

4 -' - - 0 0 0 0 0 0
'U ' 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ilOJ

L.. V 0 V' V "0 a
4 0 0 0 0 *- 0 0 0 3*- 0

C6 C 0 3 L. U 1

41

44 0) 0) a) 0 as 0j 4w 0 0D 0 0 0 0

04j - - - - - - - 0 0 0 0 0 0 ~ 0

41

:p n (A WA 14 11 14 11 A 14 0A L A L A L

-. C~~ ~ 0o 0 0

0 #A .

m V '0 ko P O f% 0 - N M t 0 '00

-109

It ~4- 4-'
o1 4o 4 U

0. 0. 0 0) 4A 0. ~ 0

a -CL c 0

V "0
0 .L . 'U ' ~ U c C ' EU U L 4' L.

0 (A th U J A 0 C

o 0 0 0 0 0 0 Q C 0 0 0 0 &

o 0 0 0 0 0 0 0 0 0 0

Q) cu W) 0
4.) 4-' 4-' 4-1 41

m- 0 0. 0. 10 S. . L. S.. 1.o Q . S.. CL
E 5 0 0 0 - 0 0' 0 0 0 5'

0 0 0 0 0 'U 0 0 eu 0 0 0 E

c- r C) c C

$- 41 tm M M

IM,,

*4J~

SE

0.

0C z

44 4

'10 -a a, O Q 2 0 2U

0

Rs -

611 $A 0 vi 0

0)u

-N. 9 IT A UCA A 4

All 35 projects were performed for the DoD. Projects 1 through 4 involved
C I applications, the others did not. The number of source lines ranged
from a low of 1K to a high of 350K, with most single programs in the range of
10K to 40K lines. Approximately a third of the projects involved some classi-
fied components.

Eleven of the projects dealt with proyrams written entirely in assembly
language. Four dealt with programs written entirely in higher order language.
The remaining 20 involved programs or systems using both types of languages.

Twenty-nine of the projects dealt with real-time programs. Eight involved
programs developed with modern software engineering practices. Approximately
half involved initial development; the other half dealt with modifications to
existing systems.

Twenty-eight of the IV&V projects were performed in parallel with the develop-
ment effort, only seven were not. All but six of the projects were already
completed. Sixteen of the projects were considered to have good data avail-
ability, seven fair, six poor; in six cases, data were incomplete because the
projects were not yet complete.

A3. SELECTION PROCESS

Of the 35 candidate projects, 12 met the 100,000-line criterion. Since five
ot these were either nonstandard IV&V efforts or were in too early a stage for
inclusion in the study, the project selection task consisted of picking five
from among the seven eligible projects: 3, 4, 12, 13, 14, 19 and 23.

All of these candidates fulfilled certain of the criteria. All were DoD
projects. All provided a balance of HOL and assembly language. Any subset
would provide a balance of initial development and modification. All were
perfored in parallel with the development effort; all were complete except
for Project 23, which was nearly so; and all were considered to have good
availability of data.

One important consideration was the relationship of the projects to one
another. Projects 3 and 4 involved two versions of the same system, as did
Projects 12, 13, and 14. The seven projects taken together, therefore,
represented only four different systems, and a selection that included at
least one from each system was desirable. Other considerations were that
Project 19 was the only one involving modern progranming practices and that
Projects 3 and 4 were the only ones involving the desired C31 application.

The final decision was to use Projects 3, 4, 12, 19 and 23 Projects 3 and 4
were both included because of the desirability of using C I projects in the
study. Project 12 was selected from among Projects 12, 13 and 14 because it
represented the initial development of the system. Projects 19 and 23 rounded
out the selection by bringing into the study the other two candidate systems.
These five projects, in the order discussed, were renamed Projects I through 5
for the remainder of the study.

-111-

., ,I, , , '. ..] = ! .J :. :. , , : , ... ,. . , 2, _ ..,

APPENDIX B

DATA COLLECTION

The data collection activity consisted of:

* Translating the study's objectives into specific questions that

could be answered by the study

* Identifying the data needed to answer these questions

* Developing data collection forms

s Obtaining project records

* Recording relevant data

* Converting the data to machine-readable form

The following paragraphs describe these activities.

Bi. KEY QUESTIONS

Table B-I identifies the key questions identified for the study. These
questions focus on the nuirer and characteristics of anomaly reports affecting
software reliability, the number and characteristics of anomaly reports
affecting software maintainability, quantitative data concerning IVMVs effect
on development cost and productivity, and ways in which project characteris-
tics affect IV&V results.

B2. REQUIRED DATA

Analysis of the study's key questions revealed that three type3 of data were
needed:

* Data concerning each anomaly reported by IV&V

- Data concerning IV&V project characteristics

- Data concerning development project characteristics

Table B-2 identifies the specific information identified for each of these
catagories.

B3. DATA COLLECTION FORMS

Three data collection forms were developed for the study, corresponding te the
three types of data required:

* An anomaly questionnaire

-113-i

Table B-i. Key Questions Identified for the Study

Questions concerning software reliability:

e How many of the anomaly reports submitted affected software
reliability?

* What development materials did they involve?

* What types of anomalies were they?

* How severe were they?

* What aspects of reliability would they have affected?

* What was the operational reliability of the resulting software?

Questions concerning software maintainability:

How many of the anomaly reports submitted had a direct affect on
software maintainability?

What development materials did they involve?

a What types of problems did they report?

* How severe were they?

* What aspects of maintainability would have been affected?

* What were the indirect qffects of reliability anomalies on
maintainab 1 ity?

Questions concerning development cost and productivity:

a What was the average ratio of IV&V cost to development cost?

* What factors affected this ratio?

In what ways did IV&V increase development cost?

e In what ways did IV&V decrease development cost?

* What was the cost effect of early detection?

v What was the overall cost impact of IV&V?

Questions conterniog the. lmprovemeit of IM& effectiveness

flow did different IV&V project characteristics affect IV&V
results?

Now did different develolenL project characteristics affe
IV&V results?

--- -N114-

Table B2 DaaNeeded From EahProject

Data concerning each anomaly reported by IV6V:

e Location (specification, code, etc.)

* Type of problem

* Probable effects if left uncorrected

SSeverity

* Detection date

* Detection method Resolutio
* Resolution dt

Data concerning each IV&V project:

* Objectives

* Schedule

* Man-loading

e Relationship with developer

* Tools and techniques used

* Cost

Data concerning each develojtnent projectI:

* Schedule

* Man-loading

* Development practices used

* Programmier productivity

* Test results

* Software operational performance

* Software maintenance requirements

* Cost

* An IV&V project questionnaire

* A development project questionnaire

Figures B-1, B-2, and B-3 illustrate these questionnaires.

In preparing the anomaly questionnaire, current literature concerning error
classification was surveyed. Table B-3 presents a sampling of the error
classification schemes found. A significant characteristic of many of these
schemes was their focus on coding errors. Requirement and design errors were
frequently relegated to a single category or ignored altogether. Because IV&V
monitors the entire development process and reports anomalies in requirement
and design specifications as well as code, these schemes were unsuitable for
the study.

A notable exception to this coding orientation was the classification scheme
devised by the Software Acceptance Criteria Panel of the Joint Logistics
Commanders Joint Policy Coordinating Group on Computer Resource Management.
This scheme, reported by Hartwick (Reference 38)* includes categories in three
areas: specifications, code, and data. It proved the most useful as a basis
for developing anomaly categories.

B4. OBTAINING PROJECT RECORDS

Three types of records were needed for the study:

* IV&V technical results

* IV&V project data

* Development project data

IV&V technical results were obtained from anomaly reports and anomaly resolu-
tion records for each project. Figures B-4 and B-5 provide an example of each
of these forms. IV&V project data were obtained from accounting records,
project reports, interviews with project participants, and information provid-
ed by Air Force project officers. Development project data were obtained by
channeling requests through RADC to the appropriate Air Force project offi-
cers. Table B-4 identifies the project records that were obtained.

0B5. RECORDING THE DATA

The data-recording activity involved completion of a development and IV&Vproject questionnaire for each IV&V effort, and an anomaly questionnaire for
each anomaly reported. The development questionnaires were, for the nxst
part, filled out by the Air Force project officers contacted by RADC. The

* Hartwick, R. 0., Software Acceptance Criteria Panel Report, Joint Logistics
Coma nders Joint Policy Coordinating Group on Computer Resource Management,
Software Workshop, April 1979.

-116-

)k, " " , .. - A , .,. •,, ., . ,.

ANOMALY QUESTIONNAIRE Respondent

I. Program Version Report No. Part

2. Report Date Analysts

3. Anomaly Description

a. Anomaly location:

System/subsystem specification () Code
) Interface specification () After-code design specification

Software requirements specification () User documentation
Before-code design specification () Other

b. Brief description of anomaly_

c. Anomaly category:

Requirement specification: Before-code design specification or code:

Incorrect requirements () Requirement/design compliance• " I I ~~~~Inconsistentnopet requireetseuements ()Choice of algorithm, mathematics

Ino t Sequence of operations
Other requirement problems,)Data definition

) Unclear, untestable () Data handling:()Unfeasible, questionable)Initialization
()(Exrnos inpporit Addressing, indexingOther Misuse of flags

Presentation problems Misuse ot counters
Standards, deeomn)rcie Shared memory locations
Configuration management (Other
Other) Timing or interruptibility

... Interfaces or i/O:~After-code design specification or Input handling

) I-ruser documentation. Output
iardware interfacesi Incorrect documentation E xternal software interfaces

Inconsistent documentation(Routine interfaces
Incomplete documentation () Other design/code problems
Other content problems) Extraneous/inefficlent
Presentation problems) Program error handling

Standards, development practices)Other
) Configuration manageatnt () Design/code presentation

* (Other) Standards, development practices
.......................o Configuration management

Other development problems Cotments, annotations
) Hardware system, other progrms 5 Other

Other documents
Unknown origin
Development process
Other

d. sp,. lil circumstances:

) An error made while correcting a prtviousl)- -rported anomaty
A disagrtwent among developmnt owterials with none clearly wrong

) A non-optimal, rather than Incorrect . development decision
) A latent error--not wrong now but could cause maintw nance problems

A hold-over fr(m a prvvious version of the program
A "COt" of a previously-reported artialy

Figure 8-i. The Anomaly Questionnaire

- ! 1?

ANOMALY QUESTIONNAIRE--page 2

4. Consequences of Anomaly:

a. The anomaly could affect the program's

Development () Operation () Usability
Verifiability () Maintainability () Other

b. If it could affect operation, would it specifically affect:

Correctness () Security () Other
Accuracy precision () Efficiency

c. Severity of consequences:

High () Medium () Low () Unknown

5. Detection Information

a. IV&V activity at time of detection:

Requirements verification (Validation/testing
Design verification (Documentation verificatiun
Code verification Other

b. Development phase at time of detection:

Requirements defintion (Testing
Design Post-testing
Coding anJ checkout (Other

c. Tools or methods that resulted in detection:

() Manual analysis, specifically_

Program execution, specifically_

() Tool use, specifically_ ___ _

6. Anomaly Resolution:

a. Anomaly acceptance.

() Accepted as written) Withdrawn/superseded
Accepted with changes Unknown
Rejected) Other

b. Action taken:

() Fixed and: () Fi/workarounl deferred and:
Fix was verified)Taken care of later
Fix found wrong Not taken care of later
Fix not verified Outcome unknown or pending

Workaround adopted ()Action unknown
Negated by another change (Other
No action to be taken -

c. materials changed in respose to report:

(System/subsygtem specification Code
Interface specification User docaentatliC

Software requirements sciffcat ion Unknown
Oesign specification () Other

d. Resolotion date

Figure 8-1. The Anomaly Questionnaire (continued)
-118-

, ;

IV&V PROJECT QUESTIONNAIRE Respondent

1. Program Version

2. Cost of IV&V project:

a. Total

b. Labor

c. Computer

d. Documentation

e. Other support

3. Duration of project (give start and stop dates):

a. Total

b. Requirements verification

c. Design verification

d. Code verification

e. Testing

f. Documentation verification

4. Man-months expended:

a. Total

b. Reuirements verification

c. Design verification

d. Code verification ___

e. Testing

f. Documentation verification

5. Relationship with developer - check one:

a. Good

b. Fair -- s ae hostility

c. Poor -* very poor cooperation; considerable hostility

6. Tools used oot project,

?. Project partici tants.

Figure 3-2. The IV&V Project Questionnaire

,19

t

DEVELOPMENT PROJECT QUESTIONNAIRE Respondent

1. Program Version

2. Development cost:

a. Total

b. Labor

c. Computer

d. Documentation

e. Other support

3. Development duration (give start and stop dates):

a. Total

b. Requirements definition phase

C. Design phase

d. Code and checkout phase

e, Testing phase

. an-months expended:[a~~~. 1061__________

kb. equirements aeinitton

c. Des$ign_________

d. Cede and -tiwekaji_______

o. Tcsttng, -

S. if fljgeaW~r prizutitvltj ftgures **IV kept, dOoso Provige thV4.

b. Toots used ani m.

#. 5v&JTQ prWObteasgor rt&od dur~w] PN *raa tqfstin?_______

b. If to

* Please iofvidi copies o put ugen' reports if &at table

* Pleae poviud twcbloclvrror tvsltutton titttnuttM I, 4Vtjajbt.

4. Wat pvtbltt/wte t ted durtutg ofleatiawal u401 _____

b.if so.,

* Pi4s1 irovide pnlWn/et v i'wolutiaa tiovatvw* if tvailable.

Figure B-3. The Oevelopnnt Project Questionnaire

-1W0-

.. . .1.JtlII I i i i l l I

UEVELOPMENT PROJECT QUESTIONNAIRE -- page

8. Maintenance:

a. When did the program go operational?

b. Has the program been modified since going operational?

c. If so, was modification due to:

User requirements change

.Problems/errors detected in operational use

Other:

d. If modification was due to problems/errors, describe or provide
documentation describing the needed changes.

9. Which of these programlng practices were used? (See RADC Computer
Software Development S ecification No. CP 0787796100E)

Yes No If yes, to what extent?
If no, what was used

- , instead?
a. Top down design

a At program le-el
* At s$tm lvel_

b. Program suppot library

4 Manual PS_

4 Basic PSL

4 full PSL with #eAn9cftnt
ddta collection and repni __

"..Lang° age standtrds

a Structurd twde accomplishe
with simulated ltstructs __

a Structured cod accomitsited
with pitprocssr

0 Stroctlurw~ cute directly

CV tabl

-121~l4- - -

* IA vetti,, with to"e

totMI towtttoat Vt~h douivia

* M.diC P t -

* fultl P"takwr too0- - ______

Figure 8-3. The Developaent Project Questionnaire (continued)

ill

Table B-3. Error Categories Found in the Literature

Authors Major Error Categories

Amory, Clapp Input data
(Reference 39)* Internal data

Computation procedures
Control procedures
Interface procedures

Rubey Incomplete or erroneous specification
(Reference 2) Intentional deviation from specification

Violation of programming standard
Erroneous data accessing
Erroneous decision logic or sequencing
Erroneous arithmetic computations
Invalid timing
Improper handling of interrupts
Wrong constants and data values
Inaccurate documentation

Dana, Blizzard Incomplete or erroneous specification
(Reference 7) Specification violation due to incorrect implewntation

Violation of programming practices
Incorrect data/instruction acress and storing
Incorrect logic and sequencing
Incorrect branching-and jumping
Incurract equation computation and arithoetic
Incorrect timing and process allocation
Problems with interruptibility and data coherency
Incorrect constant value and data fortrats
Incorrect docutxintat i on
Ern-oneous use of system hardware/software

Thayer, et al. Computation
(Reference 5) Logic *

Data input
Data handling
Data output

*. Interface
,: Data definition

Data base
Operatin
Oter
Oocuuntat i on

* " ,, and Clapp, J.A., Eagneang of Iare A
Software Error Classification iethodology RADC-TR-74-324, Vol I
Jan. -195

Table B-3. Error Categories Found in the Literature (continued)

Authors Major Error Categories

Hartwick Software specification
(Reference 38) - Unnecessary functions

- Incomplete requirements or design
- Inconsistent requirements or design
- Untestable requirements or design
- Requirements not traceable to higher

speci fi cat i on
- Incorrect algorithm
- Incomplete or inaccurate interface

speci fi cations

Code
- Syntax errors
- Noncompliance with specifications
- Interface errors
- Exception handling errors
- Shared variable accessing errors
- Software support environment errors
- Violation of programming standards
- Operational support environment errors

Data
- Accuracy
- Precision
- Consistency

Endres Understanding the problem/choice of algorithm
(Reference 40)* - Machine configuration or architecture

- Dynamic behavior and communication
between processes

- Functions offered
- Output listings and formats
- Diagnostics
- Performance

Implementation
- Initialization of fields and areas
- Addressability
- Reference to names
- Counting and calculating
- Masks and comparisons

* Endres, A., "An Analysis of Errors and Their Causes," Proceedings of
the International Conference on Reliable Software, April 1915.pp327 .

-123-

. .. .V , : : ,, , . . . o .,: % i / , " ..; , i . -

Table B-3. Error Categories Found in the Literature (continued)

Authors Major Error Categories

- Estimation of range limits
- Placing of instructions within a module,

bad fixes
Nonprogrammi ng errors

- Spelling errors in messages and commentaries
- Missing commentaries or flowcharts
- Incompatible status of macros or modules
- Other

Bowen
(Reference 41)* Design

I nterface
Data definition
Logic
Data handling
Computational
Other

AN/SLQ-32(V) Requirements
V&V SOW Processing design
(Reference 41) Data base design

Interface design
Processing construction
Data base construction
Interface construction
Verification
Specification/documentation

Bowen Expanded, reduced, or erroneous requirements
(Reference 41) Nonresponsive program design

Incomplete or erroneous program design specifications
Erroneous decision logic or sequencing
Improper program storage or response tioe
Improper handling of interrupts
Incorrect module or routine linkagesErroneous arithmetic computations

Insufficient accuracy in intplementation of algorithm
Inaccurate or incomplete comments in prologue
Erroneous editing for new version update
Incomplete or inconsistent data structure definition
Wrong value for constant or preset data
Improrr scaling of constant or preset data

*-Bowen, J. B., "Standard Error Classification to Support Software Reliabil-
ity Assessment,' Proceedings of_.the Nati.oal Conq)uter Conference, 198U,
pp. 697-705.

4124-

°IiIW
Table B-3. Error Categories Found in the Literature (continued)

Authors Major Error Categories

Uncoordinated use of data by more than one user
Erroneous access or transfer of data
Erroneous reformatting or conversion of data

. . Improper masking and shifting of data
:"L~

, , Failure to initialize flags, counters, data areas
', New error introduced during correction

Noncompliance with programming standards or conventions

Baker
(Reference 42)* Computational errors

Logic errors
Input/output errors
Data handling errors
Operating system/system support software errors
Configuration errors
Routine/routine interface errors
Routine/system software interface errors
Tape processing interface errors
User interface errors
Data base interface errors
User-requested changes
Preset data base errors
Global variable/COMPOOL definition errors
Recurrent errors
Documentati on errors
Requirement compliance errors
Unidentified errors
Operator errors
Questions
Hardware errors
Design/requirement logic errors

Fries Logic errors
(Reference 43)t Data handling errors

User-requested changes
Operator errors
Recurrent errors
Requirements compliance errors
Computational errors

kVIii!, W, F., Software Data Collection and Analys!s§ AReal-T.me stem: ! ~P roject History, .- 192-- , r June 1971, " :..

t Fries, M. J., Software Error Data Acquisitlon-, RADC-TR-7-130, April
197.

• 1.971- "

Table*B-4. Project Records Obtained for the IV&V Study

Needed Project Project Project Project Project
Information 1 2 3 4 5

Technical Results

Anomaly Reports x x x x x
Anomaly Resolution Data x x x x x

IV&V Project Data

Cost X X. xX-
Schedule x x x x x
Man-loading -- x x x
objectives x x x x x
Relationship With
Developer x x x x x

Tools Used x x x x x
Parti c ipants x x x x X

Development Project Data

Cost x x x x
Schedule x x x x
Man-loading x x x
Programmner Productivity - ---

Test Results x x x x
Operational Performance xx N /A
Maintenance Requirements x x N/A N/A
Progranulung Practices x x X

kgo

44

JI6

IV&V ANOMALY -REPORT
Project Aiialys

Report No.______________ Subject

Date-

Anomaly Type. -Requirements -Desgn -...Code __Documentation

Anomaly Severity:, *..H..igh -Medium _Lnw

Modules Affected: _________________________________

DCfuments Affected:____________________________________

References:
Description:

Effects:

Ronwanclatlk"

Reioutlon,

Figure 8-5. Typical AnoMaly Report Form

-123-

IV&V project questionnaires were filled out using Logicon records and IV&V
management data supplied by Air Force project officers.

Most of the data-recording activity was devoted to filling out the anomaly
questionnaire. This process consisted of the following steps for each anom-
aly:

* Recording program name, version, anomaly report number, date,
analyst, location, and severity

a Writing a short description of the anomaly

o Making judgments as to anomaly category and effects

* Correlating the anomaly report date with IV&V and development
schedules to determine the phase in which the anomaly was
detected

a Cross-referencing the report to anomaly resolution forms to
determine its acceptance and resolution

* Determining, often by inference, the detection method and

special circumstances associated with the anomaly

The following paragraphs discuss lessons learned in this process.

B5.1 Severity Ratings

The study originally proposed tQ classify anomalies into four severity
categories--Critical, Serious, Moderate, and Trivial--as had been done in
the IV&V study conducted by Dana and Blizzard (Reference 7). All five of the
IV&V projects selected for the study, however, used only three levels--High,
Medium, and Low--and it was decided to adopt these three levels rather than to
try to map the three levels given on the anomaly reports to the four levels
proposed for the study.

Upon closer inspection, it turned out that two of the projects--Projects 1 and
2--had actually used six severity ratings: High with nuclear safety implica-
tions, High without nuclear safety implications, Medium with nuclear safety
implications, and so on. Discussions with project participants revealed that
simply ignoring the nuclear safety implications and using the High, Medium,
and Low designations would be inaccurate because anomalies with nuclear safety
implications are inherently iiore serious than those without. The partici-
pants' recommendation was to use the nonnuclear safety ratings as they were,
but to rate 4igh and Medium nuclear safety anonalies as High, and Low nuclear
safety anoalies as Medium. This is the approach that was used.

* Another interesting discovery was that there were two distinct approaches to
assigning severity ratings. One approach asked the question: How severe
would the consequences be if the problem made possible by this anomaly were to
occur?" The other asked the dual question: "How likely is it that this
anomaly will cause an operational problem, and how severe would the conse-
quences be if the problem occurred?"

-129-
"I,,

The two approaches can result in considerably different severity ratings.
Many anomalies concern a remote, yet real, set of circumstances that could
affect program operation. These anomalies would be rated higher using the
first approach than the second. Anomalies concerned with incorrect documen-
tation, code that is wrong but happens to work correctly in the current
version, and other such problems would also be rated differently by the two
approaches.

The question that arose for the study was how to resolve the potentially
inconsistent ratings for the five projects. Discussions with project partic-
ipants, however, led to the conclusion that the soundest approach was to use
the ratings that were originally assigned, despite their different interpre-
tations. Severity ratings are by nature subjective, and if the IV&V agency,
DoD project officer, and developer all agreed to a given rating at the time of
the project, that rating reflects project outcome more accurately than one
that might be imposed later. Except for the nuclear safety anomalies, there-
fore, all severity ratings were accepted without change.

B5.2 When is a "Typo" not a "Typo"?

In categorizing documentation anomalies, an attempt was node to differentiate
between "substantive" anomalies, such as incorrect, inconsistent, and incom-
plete facts, and "presentation" anomalies, such as format errors and typo-
graphical errors. The distinction turned out to be unclear in the case of
typographical errors.

In English text, iiost typographical errors are easily recognizable as such.
A sentence that says "The program shall accept 400 inputs per sacond" may give
the reader pause, but is, after a moment's thought, understandabThe. On the
other hand, if the sentence says "The program shall accept 40 inputs per
second," where "40" should be "400,," a typographical error has turned into a
potential development disaster if not caught and corrected.

Because of the wide disparity in the potential effects of typographical
errors, each such anomaly was judged on it own merits. General guidelines
that emerged were that eerors in the typing of numbers, matheotical symbols,
variable names, and set/use table entries were regarded as substantive anol-
alies, those for which interpretation of the intended meaning was relatively
clear were classed as presentation problems.

B5.3 Anomialy _Effects

For purposes of the study, the effect of each anomaly was at least as impor-
tant as its cause. During the course of the data collection activity,
certain guidelines emerged for determining anomaly effects. The following
paragraphs describe these guidelines.

,l5,3.1 Requirement Specification Anomalies

The impact of a requirement specification anomaly depends upon both the type
of pi-oblem and the development stage in which it is detected. AnomaIies
detecttd before the appearance of design or code were generally considered to

-130--

._______ ifm lm~

affect program development, verifiability, operation, and maintainability.
For anomalies detected after the appearance of design or code, the following
guidelines applied:

* If a faulty requirement resulted in faulty design or code,
it was considered to have an impact on program development,
verifiability, operation, and maintainability.

* If the design and code were correct despite the faulty require-
ment, the requirement anomaly was considered to have an impact
on verifiability and maintainability or on maintainability
alone, depending on the anomaly.

B5.3.2 Design Specification Anomalies

The impact of an anomaly in the design specification was also determined by
both the type of anomaly and the time at which it was detected. Anomalies
detected in the before-code design specification were regarded as design anom-
alies and were usually considered to have an impact on program development,
operation, and maintainability. Usability was sometimes affected; verifiabil-
ity was usually not since software is tested against requirements rather than
design. Anomalies detected in the after-code design specification were
treated as follows:

* If the faulty design resulted in incorrect code, the design
specification anomaly was considered to affect development,
operation, and maintainability.

If the code was correct, the design specification anomaly
was considered to affect maintainability only.

85.3.3 Code Anomalies

Most code anomalies affected program operation. Anomalies affecting usability
included implementations that provided unclear output messages, or cases in
which input formats were overly restrictive. Anomalies affecting raintalna-
bility included cases of extraneous or inefficient code, incorrect comments,
inconsistent implementation, end code that was incorrect but happened to work
correctly in the current version.

B.3.4 User Documentation

Most user documentation anomalies affected program usabi ity. A few were con-
sidered to affect maintainability as well.

05.4 Detectloo-Methods

Of considerable interest to the study were the toolsiand techniques that
resulted in the detection of each anomaly. Unfortunatily, this information
was not generally contained in the anomaly reports and Was therefore unavail
able -o the study. In many cases, the IV&V technique could be inferred from
the IV&V activity in progress at the time of detection. Requirements verifi-

-131-

to involve program execution. For code verification, however, detection
could have resulted from either manual -analysis or use of static analysis
tools, so no assumption could be made.

B.6. GENERATING THE IV&V DATA TAPE

The final task of the data collection activity was preparing a magnetic
tape containing the data collected. This task consisted of:

* Determining the required tape characteristics from the Data and
Analysis Center for Software (DACS), where the tape was to
reside

* Designing the tape format

* Selecting an encoding scheme for the data

* Encoding the data

* Transferring the encoded data to magnetic tape

* Generating a listing of the tape contents

The tape and listing were used for subsequent data analysis. At the conclu-
sion of the study they weie delivered to RADC.

-132-

?I

APPENDIX C

SOFTWARE FEATURES THAT CONTRIBUTE TO MAINTAINABILITY

Specific software features that contribute to maintainability are given below
(References 17, 19, 44*).

Area Feature

Requirements Correct requirements

Consistent requirements

Complete requirements

Testable requirements

Inclusion of traceability information

Design Allowance for excess computer capacity

Top-down design

Modular design

Modules of limited size

Single function* for each module

Separate modules for input, output, computation

Single entry, single exit for all modules, except for
certain computer interrupts and error-condition exits

Initialization and housekeeping functions internal to
the modules needing them

Only control modules able to make abort decisions

Communication between modules.limited to defined inter-

faces

All control data passed only through defined interfaces

Coherent conceptual organization

Consistent application of design principles

STed, J. R., and Skrukrud, A. M., Software Acquisition Management
Guidebook: Software Maintenance, ESD-T". 7-32, Oct. 1977.

-133-

Area Feature

Design Centralized data base
(continued)

Controlled data base

Limited access to data base by each module

Procedures to define and control data base entries

Module and data base interfaces not overly complex

Data base designed for expansion and change

Data base symbolically defined

Limited equipment interfaces

Machine dependencies isolated and encapsulated

Allowance for future extensions

Self-monitoring features

Code Full implementation of design features that contribute
to maintainability

Maintaining a reasonable storage and tine margin

Use of a single higher order language if oossible

No assembly language embedded in other code unless ex-
pllcity called for'

Adherence to module size constraints

Use of structured programming

Use of blank cards to set off functional blocks vis-
ually

Use of indentation to reflect block structure

Use of general comments preceding each module

Use of adequate comments to identify flow of control and
purpose of each section

Adequate comenting of time-sensitive areas to alert
maintainers

-134-

Area Feature

Code Use of symbolic parameters for constants and basic data
(continued) structure sizes

Use of subroutine arguments rather than global common

Use of named common

No sharing of variables or temporary storage locations

No self-modifying code

No absolute addressing

No relative addressing

No embedded constants or literals

Symbolic, meaningful data references

No code that imlicitly couples one module to another

Avoidance of dynamic allocation of esources

Avoidance of unnecessarily complex arithmetic ant; con-
ditional statements

Avoidance of recursive/reentrant coding

Avoidance of unnecessarily complex logical structures

Consistency in design 1oplementation, 1/0 processing,
error processing, module interfacing, module/variable
Snating

Inclusion of test aids or implementation to support

their use

Documentation Complete,.accurate description of the program as coded

Incorporation of all design changes made during coding
and testing

lime-sensitive portions of code clearly identified and
described

Modular organization

Consistency in detail and style

Emhasis on ease of use
J;-15

Area FeatureDocumentation Inclusion of objectives and assumptions
(continued)

Avoidance of complexity

Allowance for expandability and ease of change

Configuration Accurate status records for software, documentation,
Management and changes

Accurate date and version iidicators in source listings
and documentation

Adequate control and documentation of changes during
devel opment

Consistent numbering schemes to relate corresponding
source listings, documentation, status records

Controlled use of program patches

-136-

MM'.

.

REFERENCES

1. Nie, N. H., et al., Statistical Package'for the Social Sciences, McGraw
Hill, 1975.

2. Rubey, R. J., "Quantitative Aspects of Software Validation," Proceedings
of the International Conference on Reliable Software, April 1975, pp.
246-251.

3. Boehm, B. W., et al., "Characteristics of Software Quality," TRW Software
Series TRW-SS-73-09, Dec. 1973.

4. Proceedings of the TRW Symposium on Reliable, Cost-Effective, Secure
Software, March 1974, pp. 5.13-5.17.

5. Thayer, T. A., et al., Software Reliability Study, RADC-TR-76-238, Feb.
1976, A030798.

6. Shooman, M. L., and Bolsky, M. I., "Types, Distribution, and Test and
Correction Times for Programming Errors," Procedures of the International
Conference on Reliable Software, April 1975,pp. 347-357.

7.- Dana, d. A., and Blizzard, J. D., The Development of a Software Error
-Theory To Classify and Detect Software Errors, Logicon Report HR-7401,
I ay.9T4.

8,- Finfer, M. C., Software Data Collection Study, Volume ITT: Data Require-
ments for Product7iVi and Rel'iability Studies, RADC-TR7639 'Vol.
III une 1976t A036064.

.9.. -Radatz, J. W., Ramsey, O.C., and McKillop, T. L., NSCCA/PATE Guidebooks,

Volume 11, Logicon Report R:SED-80204-III, June 1980.

" "Software
10. Miller, C. R., "Software Maintenance and Life Cycle Management, Softw9re

Phenomenology--Woking Pagers of the Software Life Cycle Management Work-
jW.7 Airie i House, Aug. 1977, pp. - .

11. Fife, D. W., "Software Management Standards," Software.Phenomenology--
Working Papers of the Software Life Cycle Management orkshop, Airlie
K}usAW-qT__771 pp. 63-80.

12. Prokop, J., Computers in the Navy, Annapolis, MD, Naval Institute Press,~~~~~1976. '- - - "

13. Robinson, D. G., "Beyond the Four Stages: What Next," Software Pheno-
inenology--Working Papers of the Software Lite Cycle Management WO-p)
Aitrlie House, Aug, 1977, pp 187-401.

14. McGonagle, J. 0., A Study of a Software Development Project, James P.
Anderson and Co., Sept. 1971.

-137-

15. Boehm, B. W., "Software and Its Impact: A Quantitative Assessment,"
Datamation, May 1973, pp. 48-59.

16. Lehman, M. M., "Evolution Dynamics--A Phenomenology of Software Mainte-
nance," Software Phenomology--Working Papers of the Software Life Cycle

SM n Management Workshop, Airlie House, Aug. 1977, pp. 313-323.

17. Peercy, D. E., "A Software Maintainability Evaluation Methodology,"
Proceedings of the AIAA 2nd Computers in Aerospace Conference, Oct. 1979,
pp. 315-325.

18. Boehm, B. W., "Software Enginering," IEEE Transactions on Computers, Uec.
1976, pp. 1226-1241.

19. Neil, G,, and Gold, H. I., Software Acquisition Management Guidebook:
Software Quality Assurance, ESO-TR-77-55, Aug. 1977.

20. Georghiou, D. L., Guidelines for Programming in Portable Fortran, Logicon
Report No. DS-R78069, Sept. 1978.

21. Donahoo, J. D., A Review of Software Maintenance Technology, RADC-TR-80-
13, Feb. 1980, A082985.

22. Basili, V. R., and Zelkowitz, M. V., "Analyzing Miedium-Scale Software De-
velopment," Proceedings of the Third International Conference on Software
Engineering, May-197, pp. 116-123.

23. Doty, D. L., Nelson, P. J., and Stewart, K. R., Software Cost Estimation
Study, Volume 11: Guidelines for Improved Software Cost Estiman
RW-R7-2 ol.1,FE W A044609.

24, Brooks, F. P., "The Mythical Man Month," Datamatlon, Dec. 1974, pp.
45-52.

25. Nanus, B., and Farr, L., "Some Cost Contributors to Large Scale Pro-
grams," Proceedings- Spring Joint__.Comuter Confernce, 1964, pp. 239-
248.

26. Finfer, M. C,, and Mish, R., Softwar Acquisition Manogiment Ou'4ebook:
Cos Etiatinad.Measurement S!TR714Y'Mr. 19BJ.

21. Walston, C. E., and Felix, C.P., "A Method of Programing Meturement and

Estir4tion,," Software Phenomenolqgy-Wokin -Papers of the Software Life
aSl anaeme4RWorkh7, Airlie Hums, 'Aug. 17A~, pp. 15374.

28. Office of the Secretary of Defense, Ebedded Cimouter Resources and the
SA7C Proess...-A Guidebook' Part Sftwar e .. mu ati-n idel...

29. Love, T., "Software Psychology: Shrinking Life-Cycle Costs," Software
Phenomenolog--Workin PaA'rr of theSoftware Life Cycle ,_Manegqt

.38-.

30. Wolverton, R. W., "Cost Estimating Algorithm," Proceedings of the IEEE
Computer Software and Applications Conference, Nov7. 1977, pp. 205-245,

31. Schwartz, J., "Resource Estimation," Software Phenomenology -- working
Papers of the Software Life Cycle Management Workshop, Airlie House,
Aug. 1977, pp. 117-130.

32. Norden, P. V., "Project Life Cycle Modelling: Background and Application
of the Life Cycle Curves," Software Phenomenology -- Working Papers of
the Software Cycle Management Workshop, Airlie House, Aug.. 1977, pp.
S217-227.

33. Black, R. K. E., "Effects of Modern Programming Practices on Software
Development Costs," Proceedings of the 15th IEEE Computer Society Inter-
national Conference, Sept. 1 77, pp. 250-253.

34. Wolverton, R. W., "The Cost of Developing Large-Scale Software," IEEE
Transactions on Computers, June 1974.

35. Herndon, M. A., and Keenan, A. P., "Analysis of Error Remediation Ex-
penditures During Validation," Proceedings of the Third International
Conference of Software Engineering,-May 1978, pp. 202-205.

36. Miy~moto, I., "Software Reliability in On-Line Real Time Environment,"
Proceedings of th International Conference on Reliable Software, April
IMF;7p1 D . ..

37. Weinberg, G. M., "The Psychology of Improved Programming Performance,"
Datamation, Nov. 1972.

38. Hartwick, R. D., Software Accentance Criteria Panel Report, Joint Logis-
tics Convuandert JT Pol icy C nord i Group on i 6up onComputer Resource
Manaqement, Software Workshop, April 1979.

39. Amory, W., and Clapp, J. A., Engineerin o_ RualitX Software ystemf (A
Software Error Classification Met odoy, RA -TR-74-324- Vol. VII,

40. Endres, A., "An Analysis of Errors and Their Causes," Proceedingsof the
International Conference on Reliable Software, April 197 pp. 327 13. -

41. Bowen, J. B., "Standard Error Classification to Suppo,-t Software Relia-
bity Assessment," Proceedings of the National Conputer Conference,
1980, pp. 697-705.

42. Baker, W. F., Software Data Collection and Analysis: A Real-Time Systei
Project Histor 77-192, un 977, A041644.

43. Fries, M. J., Software Error Data Acquisition, RADC-TR-7-130, April
1977% A039916.

44. Stanfleld, J. R., and Skrukrud, A. MH, Software Acquisition M4anagement
Guidebook: Software Miintenance, ESO-TR-77-327, Oct. 1977.

-39-

S. :Al.. < • • .,

MISSION
Of

Rome Air Development Center
IZAVC. ptans and executu~ tLeanch, devetopmen-t,, te~t and
.6eteaed acquiW&tion ptogwn6 in .6ppokt oj Command, Contot
Comnication6 and Intettigence (C 31) actiitie~A. Technica
and enq-Lnee~ing 6uppat wUhtkn A'ea,6 o4, tecnicat competence*
XA P'touZded to MS1 P,%oq~am 066ie.6 (POt6) and otheL ESV
etenent6. The pkincipot technicat MiZsion eA'ea,6 Gau
communicotion6, etectLoagnetic guidance and contAot,, .m~-
veiUance o6 gtound and aeLo,6pace object6, in'tetgence data
cotlection and handting, inA'mation sy.tem -technotogq,
.Zono,6pheA.Zc pkopagation, .6otd state scZene., m.cAoave
ph6i.c6 and etectwniZ& i~et.ibitity, monta.nabtitq and

* cornpatibiity.

